Open Design Now » remix http://opendesignnow.org Why design cannot remain exclusive Thu, 13 Dec 2012 09:32:59 +0000 en hourly 1 http://wordpress.org/?v=3.3.1 (UN)LIMITED DESIGN CONTEST / BAS VAN ABEL http://opendesignnow.org/index.php/case/unlimited-design-contest-bas-van-abel/ http://opendesignnow.org/index.php/case/unlimited-design-contest-bas-van-abel/#comments Fri, 27 May 2011 09:55:57 +0000 remko http://opendesignnow.org/?p=473 Continue reading ]]> (Un)Limited Design contest
Experimenting with Open Design

Bas van Abel

Open design covers an extensive area and its contours are not yet clearly defined, making it difficult for designers to come to grips with the developments. One of the most tangible open design experiments was the (Un)limited Design Contest, which challenged the designers to try something out and experience for themselves what happens next. Alexander Rulkens (Studio Ludens), 1 Sylvie van de Loo (SEMdesign) 2 and Goof van Beek 3 share their experiences.

All designs that were submitted were made with digital manufacturing technology, using machines that turn digital designs into physical products. Digital manufacturing offers the designer many new possibilities. Professional designer Sylvie van de Loo used a computer-controlled laser cutter to create her Fruit bowl 128DOWNLOADABLE DESIGN The bowl is constructed from 128 pieces cut out of cardboard. Her initial idea was to work out a prototype of the bowl in clay. As she was drawing the bowl in 3D on the computer with a friend, she began checking the possibilities for manufacturing the product digitally. For this, she went to the Fab Lab in Utrecht.

Sylvie: “I’ve been in the Fab Lab before, but I didn’t see the potential for my own work at that time. I thought it was all a bit too technical; I felt that a creative approach was lacking. Now I’m discovering that the technique is an important source of inspiration to me.” Sylvie took the advice to turn her bowl into a technical drawing program, which was capable of breaking the 3D form up into sectional planes with a specific width. This approach allows her to generate forms for different materials, which are then cut out with the laser cutter.
AESTHETICS: 2D It is a fairly technical process, which has had an important influence on the creative process and was one of the deciding factors in the final form and appearance of the end product.

Sylvie: “Working with the laser cutter was really a revelation for me. What a cool machine! Anything is possible. You can form 3D layers out of 2D layers. It’s very precise, and you can engrave the most beautiful forms with it. Because you yourself get to work with the prototyping technology, the process of making it is a valuable addition to the final design. If I hadn’t had the chance to experiment with the machine, the definitive form and choice of material would never have occurred to me.”  HELLO WORLD

But still, designer Alexander Rulkens van Studio Ludens feels there is a great deal of room for improvement in how people gain access to the designing process and machines.  ARCHITECTURE Alexander: “I think the Fab Lab concept can benefit from better interfaces to wield the great power that the technology can give.” He didn’t submit a product for the contest; instead, he submitted a software tool that enables everyone to create their own design easily.

Sharing for Yourself

It’s clear that access to technology offers new possi-bilities, but what possibilities does sharing creative work offer the designer? Goof van Beek won the design contest in 2009; his design received extensive publicity. Goof: “It’s fun when people come up and talk to you because they saw your design somewhere. I’m not sure if it really was the open nature of the design that gave the dress the amount of attention that it got, but it was a good first introduction to the reality outside the environs of my study. Meanwhile, I have been approached to take part in an exposition.”

It could be that the conditions of the contest played a role in this: under the (Un)limited Designs terms, the design could be published and shared without prior approval from the  DESIGNER designer. On the one hand, this made it possible for the designers to establish a name for themselves more quickly, and a company that finds the product interesting knows who to go and talk to. However, it also means that designers have given their permission for others to adapt the design and publish their derivative design. “It is a bit scary, but it also has its advantages,” says Sylvie. “The bowl is finished as far as I’m concerned, and I think it’s really great that someone else could pick it up and give it their own twist.”

She isn’t afraid this openness will stand in her way as a designer or harm her business interests. Sharing the design also associates her with the product as the original designer – and even if a design hasn’t been explicitly shared, the designer still always runs the risk of ideas being stolen.

Alexander emphasizes that it’s not just a business matter. Alexander: “The major benefit of sharing is the opportunity to get feedback on your thought and design process early on. You are opening yourself up to the knowledge of others, to different perspectives, which you need as a designer to come up with ideas that are relevant to society. The fact that your design is open to improvement ultimately means that it will be better suited to the people who are going to use it in their day-to-day lives.”

Signature

But looking at the entries in the design contest, only three products were submitted in the ‘fusion’ category. It’s a category that provides incentives for the re-use and re-interpretation of designs that had already been submitted.  REMIX Sylvie and Goof both expect that this has to do with the importance of the designer’s signature style, especially in a contest. Sylvie: “There is a difference between what you use from other designs as an inspiration for your own design, and basing your design entirely on somebody else’s. Originality is important to a designer, and designers aren’t used to explicitly recognizing others for contributing to their design. This makes us choose the safe way by inventing something new.’ Goof: “It’s strange that we don’t consider improving somebody else’s product a challenge, because I would really like to take a few designs in hand in my surroundings. I do know several designs that I think could be done better.” Sylvie thinks that education has an important role in forming this attitude. Sylvie: “At the academy, we were encouraged to be original by creating work that is unique and distinguished.  DESIGNERS I never saw any–one literally taking an existing design as a starting point for a personal interpretation or addition. Maybe we still consider ourselves too good to do that.”

Alexander has a somewhat more radical view. He believes that open design will essentially change the role of the designer. Alexander: “Designers will have to start listening better in a world where the designer doesn’t make the design decisions, but rather facilitates the process of designing decisions.” The meaning of a signature style is changing, as is the way in which we handle that signature style. Alexander: “We have to move towards a system where a person’s contribution to a design can be measured and that person can be given proper credit for their efforts. This means that the designer has to let go of the feeling that “it was my idea”.

It is not yet possible to draw hard and fast conclusions from the results of the (Un)limited Design Contest, EVENTS but it is clear that the designers will engage in the challenge. The most valuable aspect of this kind of experiment is that it enables us to explore certain aspects of open design. In the first edition of the contest, the question was still whether designers were willing to throw open their own design. The emphasis in the second edition was on compound products; the challenge for the third edition will probably be achieving a design dialogue between the contestants.

unlimiteddesigncontest.org

]]>
http://opendesignnow.org/index.php/case/unlimited-design-contest-bas-van-abel/feed/ 0
OHANDA / JÜRGEN NEUMANN http://opendesignnow.org/index.php/case/ohanda-jurgen-neumann/ http://opendesignnow.org/index.php/case/ohanda-jurgen-neumann/#comments Fri, 27 May 2011 09:52:03 +0000 remko http://opendesignnow.org/?p=457 Continue reading ]]> OHANDA
Open Source Hardware and Design Alliance

Jürgen Neumann

OHANDA is an initiative to foster sustainable copyleft-style sharing of open hardware and design. Since its emergence from the GOSH!-Grounding Open Source Hardware summit at the Banff Centre in July 2009, one of the goals of the project has been to build a service for sharing open hardware designs which includes a certification model and a form of registration. OHANDA is in process, and the process is open.

Why can’t we just use any copyleft license?

In short: copyleft  ACTIVISM derives its legal basis from copyright, which cannot be effectively enforced in the physical world. The equivalent would be patents, but the process of patenting hardware to make it open would be slow and expensive. The proposed solution with OHANDA is a label in the sense of a trademark. The label will allow the developer to associate a copyleft licence with any kind of physical device through OHANDA, which would act as a registration authority. The label could be compared to other common certificates, such as organic food, fair trade or CE certificates shown on products.

How does it work?

The designer  DESIGNERS applies the copyleft license to the product designs and documentation. This makes it possible to licence the work under his name without restricting its use to the point that it could no longer be considered open.

First, the designer signs up for a registered account (as a person or as an organization) and receives a unique producer ID. When the designer registers at OHANDA, he accepts the terms and conditions of using the OHANDA label. This means that the designer grants the Four Freedoms to the user (see below) and publishes the work under a copyleft licence. The designer then registers the product and receives a unique product ID. After doing so, the designer may apply the OHANDA label to the product. The OHANDA label and the unique OHANDA registration key (OKEY) are printed/engraved on each copy of the device. This ensures that the link to the documentation and to the contributors always travels with the physical device itself, providing visible proof that it is open source hardware. The OHANDA registration key on the product helps the user link the product back to the designer, the product description, design artefacts and the copyleft licence through the web-based service offered by OHANDA. Empowered by the Four Freedoms, the user may develop the product further,  BLUEPRINTS register as a producer in his own right, share his design artefacts under a copyleft licence, and be associated with the derivatives of the product.

Four Freedoms

The four freedoms from Free Software Definition lay the foundation for sharing hardware through OHANDA. The adaptations below are made by just replacing the term ‘program’ with the term(s) ‘device /& design’. This may not be the most understandable way of describing freedoms of sharing open hardware, but it describes the degree of openness that OHANDA stands for. By granting these four freedoms for all documentation attached to a product, sharing takes place on a sustainable basis.

Freedom 0. The freedom to use the device and/or design for any purpose, including making items based on it.  REMIX

Freedom 1. The freedom to study how the device works and change it to make it to do what you wish. Access to the complete design is a precondition for this.  WYS ≠ WYG

Freedom 2. The freedom to redistribute copies of the device and/or design.  SHARE

Freedom 3. The freedom to improve the device and/or design, and release your improvements (and modified versions in general) to the public, so that the whole community benefits. Access to the complete design  HACKING DESIGN is a precondition for this.

Who owns it?

Ideally? Nobody… and everybody. A legal entity is needed to register a trademark. This legal entity should either be a credible, pre-existing, not-for-profit organization, or a new non-profit organization with enough transparency in its operational management that the ownership of this common asset does not become an issue. Distributing the ownership gradually among all those who share their hardware feels like the right thing to do, but it may turn out too complex to manage in the long run. OHANDA is still a work in progress; existing certification models are being studied in order to adopt best practices. In the meantime, the community  COMMUNITY gathering around OHANDA will simply proceed without any legal entity or definitive registered trademark.

www.ohanda.org

]]>
http://opendesignnow.org/index.php/case/ohanda-jurgen-neumann/feed/ 601
IKEA HACKERS / DANIEL SAAKES http://opendesignnow.org/index.php/case/ikea-hackers-daniel-saakes/ http://opendesignnow.org/index.php/case/ikea-hackers-daniel-saakes/#comments Fri, 27 May 2011 09:50:20 +0000 remko http://opendesignnow.org/?p=451 Continue reading ]]> IKEA HACKERS: THE LAMPAN
Opportunities for ‘New’ Designers Bring Challenges for ‘Old’ Designers

Daniel Saakes

At the beginning of the 20th century, when standardization successfully separated design from manufacturing, a new profession emerged: the industrial designer. Industrial designers cater to mass production by making trade-offs between engineering, human factors, design constraints and marketing. Today, new ways of manufacturing and distribution are emerging that can effectively scale mass manufacturing down to small series of products marketed over the internet, or even unique products manufactured at home.

With these modern methods of fabrication and distribution, end users will participate as designers, and producers will be able to make their own trade-offs. It would not be overstating the matter to say that the traditional skills of the industrial designer will change fundamentally.

As an experiment, I designed a lamp, in the form of an ‘IKEA hack’.  HACKING DESIGN IKEA hackers are people that repurpose IKEA products to create personalized objects. In contrast to ‘everyday creativity’, 1 they share their results online. Due to the standardization STANDARDS and global availability of IKEA products, hacks can be reproduced by other people anywhere in the world. I shared  SHARE my lamp design online on the Instructables website, a popular place to share everyday knowledge and skills.

For me, sharing the design turned out to be more challenging than making the design. I was designing not only for users, but also for makers. I wanted to take into account the availability of materials and the level of expertise that my makers would have, with the aim of designing for optimal reproducibility. What, for instance, are globally available, safe ways of connecting electrical wires?  WYS ≠ WYG Reading the online discussions and comments posted by people making the lamp made me realize my responsibility.

I was amazed by the amount of people willing to void warranty, who felt confident that they would successfully be able to reproduce a lamp design that they found on the internet. After all, DIY disasters cannot be returned to the store. Also, I was surprised to find that makers made my lamp exactly as I had designed. I had secretly hoped to see new solutions and adaptations to the posted design.  REMIX Then again, it is possible that makers had no incentive to adapt the design, or no incentive to share designs online. 2

Similar to the way that IKEA hacks adapt existing products, desktop manufacturing will give end users the tools to make professionally produced products tailored to their preferences, without the need for compromises aimed at satisfying a large market.  DOWNLOADABLE Currently, the design software to cater these technologies remains in the realm of professionals. The challenge is in adapting the software to the end user’s needs, ensuring design freedom and including validation of engineering and human factors; SketchChair.cc is an example of how these parameters can be incorporated. Desktop manufacturing facilitate user confidence, allowing designers to benefit from many iterations and affordable prototyping.

The challenge for the industrial designer will thus be in metadesign: designing for the ‘new’ designer: the empowered end user. Traditional designers will design the tools and techniques to support end users, as the designers and makers of the products they need, want and desire.

www.ikeahackers.net

www.sketchchair.com

www.instructables.com/id/Big-lamps-from-Ikea-lampan-lamps

  1.  Wakkery, M, ‘The Resourcefulness of Everyday Design’. Available online at www.sfu.ca/~rwakkary/papers/p163-wakkary.pdf
  2. Rosner, B, ‘Learning from IKEA Hacking: ‘I’m Not One to Decoupage a Tabletop and Call It a Day’’. Available online at people.ischool.berkeley.edu/~daniela/research/note1500-rosner.pdf
]]>
http://opendesignnow.org/index.php/case/ikea-hackers-daniel-saakes/feed/ 0
DIWAMS / PAULO HARTMANN http://opendesignnow.org/index.php/case/diwams-paulo-hartmann/ http://opendesignnow.org/index.php/case/diwams-paulo-hartmann/#comments Fri, 27 May 2011 09:42:06 +0000 remko http://opendesignnow.org/?p=438 Continue reading ]]> DO IT WITH ALREADY MADE STUFF

Paulo Hartmann

As the environmental crisis grows ever more urgent, an awareness of ecological values is spreading. Overtly eco-friendly trends run rampant in corporate communications and marketing, plastering buzzwords like ‘sustainability’ all over every conceivable campaign and industry. Despite the hype, the growing eco-consciousness is a truly interesting movement that deserves attention for its simplicity, as well as the reutilization processes it inspires. DIY is good, but DIWAMS – ‘Do It With Already Made Stuff’ – is infinitely better.

Some Brazilian co-design pioneers have been promoting DIWAMS methodology for quite some time. Augusto Cintrangulo is a good example. 1 His Volcano project creates toys, musical instruments and games from wear-resistant and long-lasting packaging, delaying its entry into the garbage cycle.  RECYCLING In addition, this post-consumer packaging project includes workshops where children and adults learn how to build the products. Thanks to Augusto’s innovative, well-designed building process, no glue or stamps are used in the assembly of most of the planes, animals, cars and toy figures.

After creating tons of toys and a fully developed methodology with this innovative process, Augusto has now created a new project, Banco Sinuoso (Winding Bench), 2 built from the unused pieces of MDF spares from furniture manufacturers that use FSC-certified wood. Banco Sinuoso recently won bronze at the Prêmio Senai-SP Excellence Design Awards, exhibiting at the Senai-SP Design Show 2010 hosted by FIESP, the São Paulo Federation of Industries, and Senai-SP, the São Paulo branch of the National Service for Industrial Training. Banco Sinuoso is a modular system that can be used in public spaces. The modules are made from FSC-certified wood and finished with a water-based varnish. 3

Another Brazilian eco-designer who has successfully applied the DIWAMS concept is Eduardo Pereira de Carvalho, a businessman that built the flotation system for his boat from 2040 recycled  RECYCLING PET bottles. 4 Both designers view the educational layer of their projects as an intrinsic and crucial aspect, and frequently give workshops and lectures in local communities.

It would seem that DIY  DIY culture and open source are not the only trends that will guide the following Industrial Revolution. The DIWAMS concept, ‘Do It With Already Made Stuff’,  REMIX deserves due consideration here as well. DIWAMS design not only adds new recyclable material – which is a basic principle these days, almost mandatory – but also emphasizes re-using what is already there.

  1.  www.volcano.tk, volcanoecodesign.vilabol.uol.com.br
  2. www.designenatureza.com.br/catalogo09
  3. www.principemarcenaria.com.br/Produto.aspx?cod=4 - http://premiodesign.sp.senai.br/PDF/catalogo.pdf
  4. www.projetomegapet.com.br  - www.treehugger.com/files/2005/09/wip_eduardo_de.php
]]>
http://opendesignnow.org/index.php/case/diwams-paulo-hartmann/feed/ 0
FROM BEST DESIGN TO JUST DESIGN / TOMMI LAITIO http://opendesignnow.org/index.php/article/from-best-design-to-just-design-tommi-laitio/ http://opendesignnow.org/index.php/article/from-best-design-to-just-design-tommi-laitio/#comments Fri, 27 May 2011 09:16:55 +0000 remko http://opendesignnow.org/?p=432 Continue reading ]]> Can open design contribute to the world’s bigger problems, such as depletion and squandering of natural resources, population growth, consumerism and widespread poverty? In turn, can pooling knowledge and resources, re-evaluating the concept of time, and facilitating user participation help open design make a strong contribution to sustainability? Tommi Laitio investigates and reflects.

Tommi Laitio

In a world of material scarcity and competent people, the right question to ask when designing is not who knows best. Rather, we should be asking what is just and fair.

The world’s problems are rooted in moral bankruptcy that underlies all the systems in which we live and operate. Over 90% of the resources taken out of the ground today become waste within three months. 1

To avoid the catastrophic effects of climate change, we need to cut our carbon emissions to a tenth of the present level. Approximately 75% of the world’s population live in countries where national consumption exceeds the planet’s bio-capacity.2 Worse yet, the world’s population is expected to grow by 50% in the next forty years. That will make nine billion of us.

Consuming less will not be easy. In the developed world, the demand for new products, different lifestyles and more active forms of participation grows as people gain new skills, have more expendable time and money, and find themselves looking for meaning in their lives. Meanwhile, basic standards of living are far from being met in many parts of the world. While the developed countries are dealing with hedonistic angst, approximately 50,000 people die daily from poverty-related causes – most of them women and children. One billion people go to sleep hungry every day.

The world as it is, in all its flawed complexity,  TREND is the ultimate design challenge of today. The issues that need to be tackled do not have a clearly identifiable owner or one simple solution. We’ve entered an era of co-existing versions of truth that may not be fully compatible, even to the point of being mutually exclusive. The ultimate problems of this time are results of the way we eat, interact with others, exercise and consume. This is why they are also far too serious to be left entirely to professional designers.

This complex combination of problems calls for open design. So far, professional designers have dealt with material shortages by minimizing their negative impact on production and distribution. Classic approaches to market segmentation no longer function when factors like age or ethnicity no longer define ambitions and desires. Neither professional-led design nor classic approaches will be broad enough to solve pandemic problems like climate change and other worldwide anthropogenic issues, stemming from an absence of moral responsibility. The facts are clear: we need a full paradigm shift; minor tweaks to traditional methods will no longer suffice.  REVOLUTION

The challenge that we all share is to create design that actually solves problems.  SOCIAL DESIGN The questions to be answered become far clearer with this strategic focus. If design is to be used successfully in striving for a fairer place to live, a number of things will be needed, including more participatory tools for understanding the architecture of the problem, quicker ways to test alternative solutions, smarter methods of negotiation and selection, and flexibility in production and distribution.

A Tale of Two Worlds

For the first time in human history, more than half of the world’s population lives in cities. According to the UN, in 2020 half of these city-dwellers will live in slums. Aspirations for urban lifestyles are inevitably going to clash. It is harder to build communities when everyone feels they belong to a minority.

Urban freedoms need to be pursued in ways that do not limit other people’s freedoms. Strong local communities  COMMUNITY are fundamental in assisting people in planning their lives, sharing resources and knowledge, developing a sense of home, solving the problems they face, feeling safe, having room to laugh and play as well as building lasting relationships with the people around them. Community structures necessitate government investments as well as new inventions in affordable communication, food production, public transport and housing.

It is in cities that the world of tomorrow is being made, as they build resilience against global turmoil. Issues like local food production are being acknowledged in government programmes. However, in order to share their ideas and resources, people need to feel comfortable and safe. This poses a tremendous challenge, especially in societies where people are most affected by global injustice. When people are struggling to meet their most basic day-to-day needs, the motivation to search for solutions together is small. The same applies to marginalized groups, even in developed societies. When people consider themselves victims of circumstance, opening up to others takes several preparatory steps. Equality, good public spaces and education are fundamental preconditions for open design. The same applies to open design for public services – and equal societies are both happier and more cost-efficient.3

Open design is part of a shift from ‘wow design’ to ‘we design’.

Even if there are many developments that run parallel in developed and developing countries, there are also vast differences. Developing countries urgently need affordable, yet sustainable solutions using easy-access resources. Initiatives like the non-profit International Development Enterprises 4 in Nepal allow the local farmers to tap into global information without having to spend their limited resources on personal equipment. The cooperatives share phones so that they can check market prices and avoid being taken advantage of in negotiations.  SOCIAL DESIGN Combining local trust networks and striving for sustainability calls for other, better solutions than poor copies of the systems in the developed world. It also tackles one of the pitfalls that growing economies need to navigate: the risk of spending a disproportionate percentage of increased national revenues on technology instead of health and education. Systems like free text messaging, reliable communication networks and easy-to-build recharging systems become crucial.

The same logic was used in the development of the Open Source Washing Machine 5 using solar power, loudspeakers or bicycle tires. The design work started from the available materials and actual needs of the local communities. This approach to design would make it possible for developing countries to become frontrunners in smart recycling.

Smarter Crowds

The greatest potential in open design lies in building from incentives. According to Michel Bauwens, open and peer-to-peer processes have a built-in drive to seek the most sustainable solution. 6 When the entire process is a negotiation of the common good, there will be an automatic push to search for a solution that can be applied to various situations. As people twist and turn the matter, analysing it from many different angles, the true nature of the problem becomes clearer. A crowd of people will always be able to subject a problem to more thorough scrutiny than an army of corporate anthropologists.

In a climate of adaptation and rapid prototyping, PRINTING we can test the functionality of various alternatives in a faster pace. This reduces the risk of betting everything on the wrong horse, as is often done in the traditional process. Open design is part of a shift from ‘wow design’ to ‘we design’. Making that shift, however, requires broader access to places of experimentation and learning like Fab Labs.

The new dividing line is the underlying motives of the people involved: whether things are done for benefit (altruistic motives) or for profit (selfish motives). Legislation and education play a key role in the ongoing change. As Michel Bauwens has pointed out, true for-benefit design leaves room for new people. 7 New people notice undiscovered errors and contribute new resources and new ideas. A good example of design for benefit is Whirlwind, 8 which has in the last 30 years provided thousands and thousands of wheel-chairs to developing countries. Product development collaboration  CO-CREATION between developing and developed countries has guaranteed that the chairs can handle the rough circumstances. The drawings are protected by a Creative Commons license. The biggest success is the RoughRider wheelchair, produced by local manufacturers and already used by 25,000 disabled people in developing countries.

By pooling knowledge and resources, individuals can actually turn the supply chain around. Inspiring examples can be found in the field of architecture. Take Loppukiri, 9 a home for the elderly in Helsinki, Finland. Disappointed by the options for assisted living currently on the market, a group of pensioners pooled their funds and selected an architect to work with them on building residential facilities that would meet their specific needs. The Loppukiri cooperative did not limit their design process to their physical surroundings; they also designed structured activities and living arrangements in consultation with numerous professionals. The people in this community split domestic chores, cook lunch for each other and eat together. All in all, they have efficiently solved one of the greatest challenges of aging: loneliness and social isolation. The co-designed architecture of the building supports this community-based ethos and the members are keen to share their lessons with others.

As the example demonstrates, crowds do not make the professional irrelevant. The same approach could be adapted to other groups with special needs. The role of the designer would increasingly shift toward the roles of a trainer, translator and integrator. In order to tap into available resources and the in-depth knowledge held by the group, the designer needs to adapt to their needs and desires. Pooling a number of designers to tackle a bigger community challenge might be a way to win the trust of a new client. In a world where the crowds control the resources, the need for value-driven design grows. This clearly represents a potential growth market for design agencies functioning as a cooperative or a social enterprise.

Time Is Money

Open design requires a re-evaluation of the concept of time. People are willing to contribute more time to shared initiatives when they have a sense of the common good. True happiness comes from feeling needed, valuable, wanted, confident and competent. Open design at its best allows people with skills, experience, knowledge and enthusiasm to contribute their time and energy to building something together – and the desire is there. The recent economic turmoil and an increasingly well-educated population also add potential momentum  OPEN EVERYTHING to the open design movement.

Super-diversity makes it all the more difficult to apply clear distinctions between experts and amateurs. The strategy towards inclusion and trust often acts outside the global monetary world. It means valuing people’s contributions based on the assumption that every individual can have equal value. This is where innovations such as time banks 10 , the Design Quotient proposed by design agency IDEO, and hyperlocal currencies 11 come in. When people earn credits by participating in a design process,  CROWDSOURCING we give a useful and important reminder that citizens have both the right and the responsibility to take part in shaping their world. Structured participation can accelerate the positive cycle; for instance, each person’ contributions could be tracked in the form of hourly credits, which could then be traded for help from someone else. Systems that foster healthy co-dependency, such as time banks, remind us that everyone has something valuable to share: social skills, technical excellence, catering for a session, or translation. Tools like the School of Everything 12 – local social media for bringing people together to learn from each other – make it possible to provide a clearer impression of what a community actually can do.

Open design towards sustainable local happiness seems to take a major time investment. Luckily, time is something we have in abundance. The age of ‘useless people’ looks very different in different parts of the world. In Central Africa and the Middle East, the number of young people clearly outnumbers the number of elderly people; in sharp contrast, Japan has nearly five pensioners to every young person. Although many people from both groups will remain in or enter the labour market, the number of people who have nothing meaningful to do is still growing. Whether this time is directed into private endeavours or put to use for the common good is crucial to the well-being of our communities, as well as for the global resource potential. This means serious rethinking, especially in cultures where individual value has been closely linked to gainful employment.

Design for Better Living

Participation in the process is also a strong driver for sustainability. Taking part in the creative process associates the final result more strongly with an experience. Recent studies have shown without a doubt that product consumption has a lower impact on personal happiness than experiences. The sense of ownership generated by participation creates a stronger emotional bond, both between the object and its owner, and between the object and the people in the owner’s network. Objects with an experiential dimension transform into tangible memories, whereas pure objects are subject to material degradation and devaluation. In addition, if we assume shared ownership of the solution as well as the end product, we need more people to be involved in deciding how to handle disposal.

Design stemming from a desire to serve the common good is really about giving people tools to live fuller and better lives and creating objects with a longer shelf life. Inspiring examples of the potential already exist. For instance, Open Source Ecology 13 is a project of strengthening self-sufficiency in food production. Sharing the instructions on how to turn a Toyota Corolla into an eCorolla 14 allows people to improve something they already own.  REMIX The Open Prosthetics Project 15 shares the peer-to-peer learning curve with all the physically disabled people of the world. The Factor e Farm in Missouri 16 explores ways to create an off-grid community relying on scrap metal and labour. By putting the results out in the open for everyone to see and adapt for their own use, communities of people can learn from each other. Through copying, prototyping, improving and formatting, the common good can grow. Motives are crucial here: if a person’s intrinsic motives for participating are about solving problems in their own community, the right strategy for growth is sharing the methods openly.

It is difficult to say whether open design leads to better services and products. What it certainly does accomplish is building stronger communities. COMMUNITY It allows people to get to know the people around them while doing something meaningful. It builds bonds and healthy, reciprocal dependencies as people exchange services, equipment and time. As people join in, design is rooted in the DNA of their lives and they keep the end products longer. Open design also builds support for peer-to-peer politics.

Open design is a crucial tool for discovering ‘Us’ again. When successful, it challenges the traditional preconceptions about knowledge, professionalism and democracy. Open design shakes up the current balance of power. It will therefore not come as a surprise that many of the remarks warning against the purported dangers of open design – lower quality, poorer aesthetics, more junk, things that will not work – express the same complaints echoed in every democratization process in history, all the way back to the French Revolution.

The right question to ask is not which process will lead to the best design. The fundamental question is far simpler: what is right and just?

  1. Chapman, J, Emotionally Durable Design: Objects, Experiences and Empathy. Earthscan Ltd, 2005.
  2. link: wwf.panda.org/about_our_earth/all_publications/living_planet_report/, accessed on 16 January, 2011.
  3. Wilkinson, R and Pickett, K, The Spirit Level: Why More Equal Societies Almost Always Do Better. Allen Lane, 2009.
  4. link: www.ideorg.org
  5. link: www.oswash.org
  6. Michel Bauwens, TEDxBrussels, 2009. Video available online at www.youtube.com/watch?v=DGjQSki0uyg, accessed 29 November 2010.
  7. Bauwens, M, ‘ To the Finland Station’. Available online at p2pfoundation.net/To_the_Finland_Station, accessed 29 November 2010.
  8. link: www.whirlwindwheelchair.org
  9. link: www.loppukiri.fi
  10. link: www.timebank.org.uk
  11. As used on the Dutch island of Texel, for example.
  12. link: schoolofeverything.com
  13. link: openfarmtech.org
  14. link: ecars-now.wikidot.com/cars:electric-toyota-corolla:c-guide, accessed on 16 January, 2011.
  15. link: www.openprosthetics.org
  16. link: openfarmtech.org/wiki/Factor_e_Farm, accessed on 16 January, 2011
]]>
http://opendesignnow.org/index.php/article/from-best-design-to-just-design-tommi-laitio/feed/ 966
DESIGN LITERACY: ORGANIZING SELF-ORGANIZATION / DICK RIJKEN http://opendesignnow.org/index.php/article/design-literacy-organizing-self-organization-dick-rijken/ http://opendesignnow.org/index.php/article/design-literacy-organizing-self-organization-dick-rijken/#comments Fri, 27 May 2011 08:41:18 +0000 remko http://opendesignnow.org/?p=423 Continue reading ]]> The position of knowledge and expertise is changing radically, particularly in relation to how design literacy is affected when confronted with digital tools and media. Dick Rijken analyses design literacy on three levels – strategic, tactical, and operational – and examines the requirements of open design for developing a design vision, design choices and design skills.

Dick Rijken

Life in this network society  TREND: NETWORK SOCIETY is complex. We are involved in many different kinds of fluid relationships with friends, family, acquaintances, co-workers, project partners, companies, brands, websites, platforms, clubs, schools, and many other kinds of communities. More often than not, we maintain these relationships using digital media like Facebook, YouTube, Flickr, and plain old email. We connect, communicate and share like our lives depend on it – as, increasingly, they in fact do.  SHARING

In his article, Paul Atkinson talks about the demise of the grand narrative of modernist design. While this is very true, it is not solely applicable to design; it applies similarly to all grand narratives, and to modernism in general. Where we were once infatuated by concepts like universal truth and linear progress, we now find ourselves in a chaotic maze of anecdotes and interconnected ideas. Linear progress has become perpetual change with no shared direction. Within that change, we are on a perpetual quest for personal meaning, no longer seeking truth. All this is not necessarily a bad thing, but it does make life difficult and unpredictable. If we can learn to improvise and to adapt, life can be deeply meaningful and rewarding. We are not there yet, though; there is still a lot to learn.

We connect, communicate and share like our lives depend on it. As, increasingly, they in fact do.

This article deals with the changing position of knowledge  KNOWLEDGE and expertise in open networks. Digital tools and media are generic infrastructures for creating, sharing and transforming information. They enable and facilitate personal learning on a massive scale. Anything that can be converted into a digital format can also be stored, shared and used by anyone, anywhere. This changes everything that has anything to do with ideas – and therefore also changes design. It changes how we design, it changes what we design, it changes how we think about design, and it changes how we learn and teach design. Ultimately, it will also change who designs. Web 2.0, with the concept of user-generated content at its core, will not leave the design discipline untouched.

Fundamental Paradoxes

In order to understand what is happening to design, we need to understand two strongly related paradoxes that are fundamental features of networks: the paradox of identity, and the paradox of choice.

The paradox of identity arises from the fact that networks are made of nodes and links, i.e. identities and relationships. Nodes have their own unique identity, but that identity is meaningless without links to other nodes. We have become more independent from others through the development and actualization of our own unique individual self. But at the same time, we have become more dependent on others, since who we are depends to a large extent on who we relate to and interact with. We feel a need to stand out in a crowd, but we are nothing if not connected.  TREND: NETWORK SOCIETY

We depend on fluid networks around us for our daily lives’ activities. Parties are announced on and communicated through Facebook, and the fun is later shared  SHARING through pictures on Flickr. We find jobs using LinkedIn, where we present our professional résumés, and ask people we’ve worked with in the past to write positive testimonials about us. We don’t exist if we have no visible presence in the networks we want to be involved in. If you are what you act like, you better make sure you act like who you are – or who you want to be.

This makes the network society an essentially cultural place. This is true not just in the anthropological sense that everything we learn is seen as ‘culture’, but in a very instrumental sense as well: activities like ‘expression’ and ‘reflection’ that are at the core of art and related cultural activities give form to the networked life of an individual. And this brings us to the second paradox, the paradox of choice. We are the designers of our own lives through the choices we make, and there are more choices open to us now than ever before. At the same time, this freedom has a dark side to it: we must choose, whether we like it or not.  MASS CUSTOMIZATION The freedom of choice that we have is also an inescapable obligation. With choice comes responsibility. The ability to reflect and give form to our lives within given constraints is just as important for an individual as reading, writing or arithmetic. In this context, we move from ‘design as culture’ to a culture of design, where design is part of our natural mode of being.

Atoms and Bits

There is help at our disposal. Digital tools, digital media and the vast resources on the internet collectively create a massive open and accessible infrastructure for individual and communal expression and reflection. In some domains, we have seen an explosive amount of activity (music production, digital photography) that has turned whole industries upside down.  OPEN EVERYTHING Other domains are just getting warmed up. This is particularly true for three-dimensional objects. As different technologies for 3D printing are becoming affordable, Fab Labs (‘fabrication laboratories’, a concept developed at MIT’s Center for Bits and Atoms) have spread from inner-city Boston to rural India, from South Africa to the far north of Norway. Activities in Fab Labs range widely, including technological empowerment; peer-to-peer, project-based technical training; local problem-solving; small-scale, high-tech business incubation; and grassroots research.

There is a production infrastructure in the making that works with standardized formats for specifying 3D designs, so that our ideas for objects can be published, shared and modified just as easily as video clips on YouTube.

There is a production infrastructure in the making that works with standardized  STANDARDS formats for specifying 3D designs, so that our ideas for objects can be published, shared and modified just as easily as video clips on YouTube. Do-It-Yourself is no longer a matter of wood and nails; DIY  DIY is becoming more refined in terms of possible forms and construction concepts. In other fields, technological impulses like this have created an explosion of creativity among experts and amateurs alike. Accompanying that surge of creative expression, there is an awareness of the fact that technological facilitation is only meaningful at a very basic level. Anything that is fundamentally expressive or reflective derives its value from ideas and values that are embodied – and ideas and values come from people, not from technology. Again: anything is possible, but what do we want? Before we can rearrange atoms, we have to rearrange bits. Ideas! A richer palette of possible material forms requires a richer imagination than ever before. Buying a guitar does not make me a musician. Access to 3D design tools does not make me a designer.

Why Keep It Simple?

The concept of self-organization is an intriguing idea. Online media environments like YouTube, Flickr and Blogspot prove that well-designed (!) infrastructures
ARCHITECTURE can indeed facilitate personal expression on a mind-boggling scale, but they have one thing in common: simplicity. The media formats are simple (‘upload a picture here’, ‘this is a heading, type your text here’), and the media produced and shared by these tools are simple (a picture, a movie clip, a piece of text). But real life is not always that simple. As I’ve argued above, in networks, life can be annoyingly complex and most of us are not born with sufficient imaginative capacity to fully utilize the potential of the production technologies that are currently available. Most of us need help. When it comes to more complex media or artefacts, rolling out infrastructures and expecting self-organization to take care of the rest is simply not enough. Organizing self-organization is a lot of work, and does in fact involve a great deal of design and inspiration.

We are designers of our own lives through the choices we make. this freedom has a dark side to it: we must choose, whether we like it or not.

Traditional DIY stores know this very well. They don’t just sell basic construction materials anymore, but increasingly also offer ready-made lifestyle products: lamps, furniture, various semi-manufactured products, and so on. What’s more, they know that they need to help amateurs when it comes to making choices. Most websites for DIY stores  DIY feature some form of assistance. Besides tips and suggestions from famous designers, there are online tools that help buyers figure out their personal preferences for interior design. I’ve even seen moodboard tools for interior decoration. For people who feel completely adrift in the sea of choices, there are style coaches to help buyers find out who they are and what choices to make.

Design Literacy

When it comes to more innovative or complex designs, inspiration and imagination are just as crucial as production technologies. This holds true for seasoned pros and enthusiastic amateurs. When motivated prosumers want to express their identities, they need different kinds of knowledge and skills, which together make up what we can call ‘design literacy’. I suggest we conceptualize this at the following three levels:

Strategic vision
Know what you want, based on knowing who you are and what you want to achieve. This is about an awareness of personal goals and values. It can be very explicit, translated into formulated criteria, or very implicit, in which case there is an intuition that can be used to judge examples and design choices. Both approaches can work; more often than not, they co-exist in some form. Whatever it is that you’re going to make, you have to feel its soul and formulate its mission. There is probably no better example here than Steve Jobs, who has always had a very specific vision about using computing technology for personal goals, as opposed to serving the needs of businesses or governments. Apple was founded in 1979; over 30 years later, his vision has become a reality. Every product Apple has produced under Jobs’ guidance was a conscious materialization of that vision. On a more intimate level, amateurs who want to redecorate their homes will be stifled rather than liberated by all the choices and possibilities if they do not have some kind of understanding of what kind of ‘vibe’ or ‘atmosphere’ they want in their house. They, too, need a vision. There is no other way.

Tactical choices
Be able to make choices that determine what it is that you are making. What you are making is ultimately a design that can be produced, in order to make the vision a reality. We are caught between heaven and earth here, and this is the true level where design takes place: crucial decisions are made on a conceptual level that will eventually determine the details of the end result. Choices about content, structure, behaviour and form are made and fixed. This is where professional design becomes a profession, and craftsmanship begins to play a role. The question is: how much professional expertise is needed? Can this be done by an amateur?  AMATEURISSIMO It’s hard to have to start from scratch. Tweaking something that’s already close may be a better way to go. Open design to the rescue! If you see something you like, just download it and modify it to represent your vision. We’ll return to that later.

Operational skills
Be able to use available production tools and infrastructures. This can range from knowing how to point and shoot with a digital camera or upload a video to YouTube to making a final mix of a song that sounds good on different speaker systems or specifying a design with 3D modelling software for a 3D printer.

These are the pillars of what we can call ‘design literacy’: the development of vision (strategic), the formulation of a design (tactical), and technical production (operational). There are interesting interactions between the three levels, however. Ultimately, available production tools and infrastructure determine what can be made in the first place, so operational skills and tactical choices are often strongly aligned. There are also crucial links between tactical choices and strategic vision. If a 3D modelling tool is very user-friendly, very responsive, and well connected to the production tools (possibly through data standards), then the boundary between a sketch and a final design starts to blur, and users can work in a state of flow, where all three levels are active simultaneously.

Online environments prove that well designed infrastructures can facilitate personal expression on a mind-boggling scale, but they have one thing in common: Simplicity.

The distinctions between the three kinds of literacy are epistemological: they involve different kinds of expertise. All three involve mentality, knowledge, and skills – three very familiar pedagogical concepts. Thus, design literacy can be learned, just like many other things, but there’s more to it than learning to work the tools.

Becoming Literate

Professional designers  DESIGNERS have all the necessary expertise. They have an important role to play in the large-scale development of design literacy. They can be heroes when their high-quality designs inspire eager amateurs. They can produce examples to be shared on online platforms that can be used, modified and re-distributed. They can explain how they work, e.g. as teachers in face-to-face courses and online videos. In working towards the advancement of design literacy, professionalism is still our starting point.
Going back to the three central concepts of design literacy mentioned above (vision, design, and production), there are interesting opportunities and challenges in the organization of design literacy:

Strategic vision
The development of a personal vision can be facilitated by presenting, explaining and discussing high-quality designs from professional designers. The development of vision can be a vulnerable and intuitive process, and seeing how pros do it (in a video interview, for instance) can be very helpful and inspiring. Formulating the right question is often the best way to try and find a solution. Inspiration is the keyword here: designers can be inspiring through what they make, but also through showing how they came up with the right vision to begin with.

Tactical choices
The formulation of a design can be facilitated by the same high-quality examples, when they are published in ways that allow for inspection, modification and sharing. Open design plays a crucial role in this. Online environments that feature collections of high-quality examples that can be analysed, used, modified, discussed and re-published hold immense potential. Users need to be able to inspect the internal structure of a design, and then modify and share it. Designers can produce these examples and share their methods and insights in interviews or debates, and design teachers can develop new pedagogical methods and formats. In the world of digital media, users make mashups,  REMIX devising new combinations of chunks of information found elsewhere to create coherent new constructs. Open design allows for a similar approach to 3D objects, physical equivalents to mashups that can also be shared and discussed with others.

Operational skills
Technical production is the easiest skill, since all it requires is decent interface design for the relevant tools, supported by access to technical knowledge in the form of instruction manuals in print, video, or other formats. Many people can teach themselves how to do this and help each other using social media, such as forums or blogs.

Not everything can be done exclusively in the digital domain. There is definitely a need for face-to-face encounters with ‘designer heroes’, design teachers and fellow design amateurs. There is a potential here for existing cultural institutions like public libraries, archives and museums to organize the exchange of knowledge  KNOWLEDGE between pros and amateurs, as well as but just as much between amateurs and other amateurs. They can become hotspots in the real world where amateurs go to work on their expertise. STEIM is an example of such a hotspot.

Design into the Future

The STEIM story below illustrates a shift in the focus of skilled professionals: from high-quality production to high-quality coaching and education in order to facilitate expression and reflection in a larger community of passionate amateurs. Such a significant shift does not happen out of the blue; it is a deliberate choice and it takes real work, based on an informed awareness of how our world is changing.  REVOLUTION This new mentality is the ideal complement to the exchange of information and ideas that is made possible through open design and new technological infrastructures. This calls for an ecosystem of people, institutions, relationships, tools and open infrastructures, where design becomes a natural activity for all those involved. Deliberate initiatives to foster design literacy need to address the three levels discussed above. Open design is essentially a highly social affair: amateur users will gather in online environments that help them by offering good examples in the form of available open designs, which are accompanied by interviews with heroes that explain how they navigate through all three levels of literacy. Heroes are attractors; people will flock around them, learn from them and from each other. Some parts of this ecosystem will grow and flourish autonomously, but others will need to be very consciously designed and planned in order to create a vibrant and living environment. It will help us find inspired ways to deal with tough issues like identity and choice in complex and unpredictable networks.


THE STEIM STORY

STEIM is a laboratory in Amsterdam that experiments with electronic musical instruments for live performance. This was a very specialized affair in the 80s and in the 90s. STEIM’s instrument designers would develop personal instruments and user interfaces for musicians. They became world-famous for their expertise in connecting musical goals (strategic) to technical solutions (operational) through skilful design (tactical).

During the 90s, however, sensor technology and software became more widely available and more affordable. At the same time, the internet became a widely used platform for sharing knowledge and solutions among musicians. STEIM’s core activity became a DIY craze. STEIM consistently supported this trend, being one of the first organizations to hack cheap Wii controllers for musical applications and publishing electronic diagrams for its best-known musical instrument, the crackle box. But as this was happening, STEIM and its professionals had to reorient themselves to the changing situation.

Nowadays, STEIM is an important node in a world-wide knowledge network. There are more workshops than ever before. Moreover, starting in 2011, STEIM will offer a master’s degree in ‘Instruments and Interfaces’ in collaboration with the Royal Conservatory in The Hague. It has become a vibrant hub for learning about DIY instrument design and meeting other people with similar interests. There is a strong co-creation culture. Musicians are challenged to develop their personal ideas about the kind of music they want to make (strategic vision), and STEIM helps them develop their ideas, through co-design (tactical choices) and co-production by means of software configuration and the building of physical objects (operational skills).

Many people who visit STEIM don’t just leave with an instrument; in their time there, they have learned how an instrument is made. And the instrument is just the beginning; there needs to be substantial time spent in learning to play it, as well as resisting the temptation to tweak it further. This represents a big risk at the tactical choice level: know when to stop modifying and start using a product! This is expertise that transcends the operational level. This is years and years of experience feeding into how musicians are currently coached and educated.

www.steim.org

]]>
http://opendesignnow.org/index.php/article/design-literacy-organizing-self-organization-dick-rijken/feed/ 0
JORIS LAARMAN’S EXPERIMENTS WITH OPEN SOURCE DESIGN / GABRIELLE KENNEDY http://opendesignnow.org/index.php/article/joris-laarmans-experiments-with-open-source-design-gabrielle-kennedy/ http://opendesignnow.org/index.php/article/joris-laarmans-experiments-with-open-source-design-gabrielle-kennedy/#comments Fri, 27 May 2011 08:39:42 +0000 remko http://opendesignnow.org/?p=417 Continue reading ]]> The mediocracy of the middle classes dominates the current mass production design. In a world less controlled by branding and regulations, a new breed of designers can contribute to an altered, more honest economy. An interview with Dutch designer Joris Laarman, contemplating his relationship to modernism and the modernist roots of open source design and digital fabrication.

Gabrielle Kennedy

There’s always something special about the top crop of Dutch design graduates, but every once in a while one comes along that makes everyone sit up and take notice. In 2003, that was Joris Laarman. His Reinventing Functionality project at the Design Academy of Eindhoven fused function with ornament and was snatched up by Museum Boijmans Van Beuningen in Rotterdam.

Design must accept some of the responsibility for creating many of the world’s current problems.

Since then, he has earned a reputation for himself as a designer with visionary ideas and a concern for societal issues. His first project out of school, the Bone Furniture range, was exhibited in the Friedman Benda gallery in New York, a limited edition series made from marble, porcelain and resin. While he calls it an “annoying coincidence” that much of his work has spawned major contemporary trends, it also testifies to its relevance to the issues that matter.

Furniture That Can Be Grown

Both those early projects clearly expressed Laarman’s highly specific views on modernism. The Bone range DESIGNERS resulted from a cooperative partnership with car manufacturer Opel, using software to design a series of artworks based on the organic way that bones form. Car parts are designed with the help of topology optimization software to increase strength and maximize the efficient use of materials. Furniture, as it turns out, can also be ‘grown’ by adding and removing material to maximize its strength and functionality.

Laarman’s stance is that functionality and extravagance are not mutually exclusive. Where modernism went wrong, and how its core advantages need to be readdressed, are what drive his research. What he is looking for are design solutions that possess a revolutionary quality. Much of his current research repudiates how things are currently done and patiently pursues a better way not just to manufacture, but also to distribute design.

Seen in this light, design must accept some of the responsibility for creating many of the world’s current problems. More importantly, it can play a key role in fixing them. In 2009, Laarman opened his Amsterdam studio to the public for the first time. His purpose was to share his thinking and his process. He wanted to reveal how design experimentation and research can create answers, not just pretty objects.

“In galleries and in Milan, people only ever see perfect pieces,” he says. “In this exhibition, I wanted people to see the research part of design, what is behind all the pretty shapes, and how they could eventually be of use in the world. I wanted people to understand what the future of design could look like using technological progress.”

Laarman hit a wall when he was researching open source design and digital fabrication. He realized that design had taken a wrong turn somewhere along the way and was now failing society. “I am not necessarily against how design is now,” he says, “but I do think the internet can provide a more honest way to design, make, distribute and sell things.” Not modernism, then; what’s needed is a new -ism. It takes some audacity for such a young designer to criticize the industry. Laarman has gone beyond theoretical criticism, underlining his opinion with some tangible ideas that he wants to try out – hopefully with the support of his contemporaries.

I do think the internet can provide a more honest way to design, make, distribute and sell things.

“I started to think of my work and of design in general as a sort of laboratory,” Laarman says. He explains it as a place where solutions might be found to the predicament created by over-production in the post-industrial age. “I’m not condemning the whole design industry,” he says, “or even questioning it. There is a lot of very good industrial production, and that will never go away, but I think it will soon be joined by another revolution made possible by the internet.” REVOLUTION

Despite its failures and the role it played in creating over-production, Laarman’s research kept bringing him back to modernism – not as an aesthetic per se, but as a philosophy. In 2010 Laarman was selected by Ingeborg de Roode, curator of industrial design at the Stedelijk Museum in Amsterdam, to participate in the Modernism Today series. “I guess she sees me as a sort of contemporary version of Rietveld,”  DESIGNERS says Laarman. “That is an interesting comparison, and I see some connection.” 100 years ago, Gerrit Rietveld experimented with technology and materials; Laarman does the same today. His aesthetic is not in the tradition of De Stijl, but his values most certainly are.

The Modernist Roots (of Open Design)

In line with those values, it made good sense to fuse Rietveld’s world of ideas and experiments with open source design and digital fabrication; both could be argued to have modernist roots. Open source has been revolutionizing the cultural content universes of music and software for almost a decade, so why shouldn’t it also be able to change the way design is both made and distributed?

“I think true modernists wanted open source design one hundred years ago,” says Laarman, “but back then it wasn’t possible. Rietveld published manuals about how to make his chairs, but nobody could really use that information, because there were no networks of skilled artisans. His designs look simple, but are difficult to construct. These days, we can distribute knowledge in a way that can potentially bring craftspeople back to the centre stage of design – not in an idealistic, naïvely romantic way, but in an economically sound way. All we need are the networks, and cheaper and more accessible digital manufacturing technology.” One of modernism’s core flaws was the huge amount of power that ended up in the hands of a few big factories and design firms. The movement was supposed to be about the democratization of design – that was their big idea – but somewhere along the line it became nothing more than an aesthetic. Of course there are some obvious differences between modernism and open source design. Modernism produced an international and generic style. Industrialization led to mass production, which meant production had to be centralized and its products transported across the globe from countries with the lowest wages at great environmental and economic expense. Information and knowledge were kept closed and protected by copyrights; even if they had been accessible, it would have been impossible for an individual to use the design data without access to exorbitantly expensive production tools. The quality of design produced was and continues to be guaranteed by the producer; in turn, the producer and the retailer divide the majority of sales revenues.

I think true modernists wanted open source design one hundred years ago.

Open source design, on the other hand, has the capacity to conserve culture and decoration as well as traditional skills by utilizing new technology.
Digital production makes mass customization possible. Open source makes information and knowledge public; in addition, it has low entry costs, quality control takes place in the form of peer review by the public, and revenues are divided between craft and creativity. Also, because the products of open source design can be produced locally, transportation costs are drastically reduced.

What open source design does is redistribute knowledge  KNOWLEDGE and the means of production. It has the potential to change everything that we know about design, from manufacturing to education. Open source design is anti-elitist insofar as it can create fairer and more honest prices. It is democratic and helps to create self-determination in an individual’s immediate environment. Ultimately, it takes power away from the huge multinationals and from production hubs like China and India and hands it back to craftspeople – those individuals rendered irrelevant by industrialization. In short, open source design could feasibly become this century’s new -ism.

Ultimately, it takes power away from the multinationals and production hubs like China and hands it back to craftspeople – those individuals rendered irrelevant by industrialization.

“This does not mean that anyone can make good design or that more rubbish can be produced,” Laarman says. “Just because everyone has a digital camera doesn’t mean that everyone is a photographer. I am not in favour of amateurism, but the way I envision the system working, the good will eventually be filtered from the bad.”  AMATEURISSIMO

Less Production Is Needed, Not More.

Statistics show that up until the Industrial Revolution, a similar amount of products were being produced every year. With industrialization came increased wealth and prosperity, which lead to massive increases in production. The result was more waste, more environmental damage  TREND: SCARCITY OF RESOURCES and a surge in unemployed artisans. The average Western person today has access to more things than Queen Victoria owned during her reign. “The tragedy is that the vast majority of what is being today made lacks creativity and quality and isn’t really needed,” Laarman says. “The over-production of mediocrity for the middle classes has created a difficult economic situation, and there is nothing that can be done about it within the current system.”

If digital design went local, imagine what this would mean for small producers. “Right now, most people are just talking about digital fabrication,” says Laarman, “but it is happening, and I think can eventually take over. I am not going to say it will change the world, but it will change the way things are made. 3D printing is still very limited,  AESTHETICS: 3D
especially in terms of materials, but as digital manufacturing technology evolves, anything is possible.”

One possible scenario would be for local communities to invest in technology. “There are already all kinds of initiatives popping up that give individuals the opportunity to start their own small production facilities,” Laarman says. “We are looking into setting up a sort of professional Fab Lab, for instance, where any design based on a digital blueprint could be mass-customized and made.”

It could work. The RepRap machine, for example, is an open-branded DIY 3D printing machine.  HELLO WORLD The RepRap is a machine that you can make yourself (and that can reproduce itself!)  REPRODUCTION that can in turn make other gadgets. “Right now, this sort of thing is the domain of geeks for geeks, but once it becomes more professional, it will be ready for more general usage,” Laarman says.

The average Western person today has access to more things than Queen Victoria owned during her reign.

Open source design and local digital fabrication could also revolutionize education, which has mostly become outdated and irrelevant. “We could tie the platform into trade schools,” Laarman says. “Education has fallen behind and kids are not being taught what is needed. Digital manufacturing should be taught in schools, especially at the vocational school level.”
These developments are slow, however, because open source design remains the great unknown, with many unanswered quandaries. The new, innovative nature of the ideas works both for and against them; instead of inspiring images of a world less controlled by branding and regulations, open source design ends up sounding chaotic, with too much choice and an over-abundance of experimentation and waste. Issues of copyright and profit-sharing scare off many, leaving a lot of the earliest experimental platforms looking unprofessional and insecure.  MANIFESTOS

But the problem for most of the current websites selling open source design is they lack professional participation. What’s needed is more of the best and most visionary design minds debating and devising ways to make it all work. “What is happening so far isn’t really making a difference, but it does show that there is huge potential,” Laarman says.

Creative Commons  CREATIVE COMMONS has made some interesting inroads. It is a new type of copyright that protects a designer (or anyone else) so that they can make licensing agreements with suitable producers or limit use of their ideas to personal use only. “It works in an idealistic sense if everybody plays nice,” says Laarman. It is still limited, though, and resembles a small-scale iTunes dominated by amateur musicians playing a limited number of instruments. What is needed next is a professional digital platform, or a network where people can meet, access and share information about how and where to have design digitally manufactured.

Digital manu­facturing should be taught in schools, especially at the vocational school level.

Make-Me .com

One exciting project already under way, albeit in its nascent stages, is Make-Me.com, a cooperative venture involving Laarman, the Waag Society, Droog Design and some early internet pioneers. For designers, it means uploading their design for general distribution. For consumers, it means being able to access and customize design. For local producers, it means using licensing agreements to make the things that people want. “It reduces our carbon footprints and allows for more customization,” says Laarman.

That is what we do. We take something from the past and shape it into something new.

Make-Me.com plans to operate like an app store. You go there to get what you want. Some of it is free and some of it is paid for; some are designed by amateurs and some by professionals. “The amateurs and the professionals have to compete against one another,” Laarman says. “You find the chair you want online via us and you go to the local Fab Lab to have it produced on the spot. The platform is linking consumers to craftspeople and digital fabrication tools.”

Make-Me.com as an open source platform is not limited to design. “It is for journalists, architects, businesspeople, scientists – even a place you could go to for a new haircut,” says Laarman. Big pharmaceutical companies, for example, don’t want to invest in research on diseases that only affect small numbers of people, because there is no money to be made. An open source platform could open up possibilities for DIY bio-labs where scientists and doctors could access research and make their own medicines. “Anyone can use Make-Me.com to distribute information in a new way.”

Designers, however, fear what all this means for them in terms of copyright. They think production companies protect their intellectual property, the quality of their designs, and guarantee them an income. What that fails to recognize is that copyright is a complicated question. Who really owns an original idea? Is anything truly and completely original? Every creative person pilfers and borrows ideas from everywhere; referencing what came before is a natural part of the creative process. “That is what we do,” says Laarman. “We take something from the past and shape it into something new.”  REMIX Via Creative Commons licensing, it might become possible to profit from someone stealing your idea.

What limits the scope of open source at this point goes beyond legal concerns. For it to work, a whole new economic model would need to be devised and accepted. Under the current system, a designer takes his or her design to a manufacturer, who makes it and then takes it to a shop that sells it. “If he is lucky, the designer gets 3% ex factory,” Laarman says. “The brand adds 300% and the shop doubles that again. It’s ridiculous how little of the cut a designer gets. If we used digital tools and changed the way stores work, the ratio would be able to favour creativity and the craftsman.”

However, test-driving a new model will require a platform like Make-Me.com. It has to be large scale, and it will need to attract big-name designers and brands so that people can see it working. It’s a tough chicken-and-egg situation: unless designers feel that their financial income and copyright dues are guaranteed, they are not going to take the risk – and without enough designers taking the risk, it will be virtually impossible to erect the solid infrastructure to ensure smooth, safe and legal operations. It will take a coordinated leap of faith from educational facilities, designers and craftspeople for anything like this to work.
None of these obstacles are insurmountable. What Laarman wants is to be a part of the experiment and to be a contributing member of that generation who will be defining the parameters and creating the way forward. It is that vision which distinguishes him from a lot of his contemporaries – he has the commitment and the patience. He knows that this is something big and wants to do whatever it takes to make it work. “Right now, I am making very expensive, limited-edition designs,” he says. “That is a good way to fund the experiments and start a business, but eventually what I’d like to be able to do is provide open source versions of my work for everyone. That is my goal.”

He knows he doesn’t have all the answers, but Laarman is working through all these problems one by one. “I don’t want to say that this idea could take over the entire production world,” he says, “but it can certainly help craftspeople to make things that are not standardized or mass produced. If a world-wide network of craftspeople grows, then this could potentially really change things.”

Closed Societies Fail

Whichever way you look at this, design cannot continue as is. Design reveals a lot about society, and closed societies fail; like organisms that shut themselves off from their environment, a society that shuns reality will eventually die. Likewise, closed design is outdated. Open source, whether it can be what designers want or even understand at this point, is one way for design to play a real role in building a new, more honest economy. A world with less mass production, less waste, less transportation and less standardized design  STANDARDS can only be interpreted as a win-win situation for all concerned.

Another decade of discussion is needed before open source design will ever be able to make a tangible difference. Interestingly, the same arguments being used against the phenomenon now are the very same arguments that were once used against the introduction of democracy. The ruling elite will always feel threatened by the idea of giving power to the people.

What I’d like to be able to do is provide open source versions of my work for everyone.

]]>
http://opendesignnow.org/index.php/article/joris-laarmans-experiments-with-open-source-design-gabrielle-kennedy/feed/ 0
AUTHORS AND OWNERS / ANDREW KATZ http://opendesignnow.org/index.php/article/authors-and-owners-andrew-katz/ http://opendesignnow.org/index.php/article/authors-and-owners-andrew-katz/#comments Fri, 27 May 2011 08:33:02 +0000 remko http://opendesignnow.org/?p=407 Continue reading ]]> Andrew Katz traces the origins of the problems of copyright legislation and practice when confronted with the natural, human, social mode of creative endeavour. Building on developments in open source software, he outlines how designers could benefit from a similar model and reveals the differences between the digital and the analogue realm.

Andrew Katz

We are reaching the end of a great historical experiment. Printing (starting with Gutenberg-style presses  PRINTING and leading to huge industrial Heidelberg printing machines), radio broadcasting, 78s, vinyl, CDs, cinema, television: all these discoveries formed the technological backdrop for this experiment. All are (or were) media based on the principle of one-to-many distribution. To understand how this experiment was initiated, and how it is reaching its end, we need to understand a little of the nature of the businesses involved in these activities, and how the law enabled them to attain, and retain, that nature.  WYS ≠ WYG

As the public grew accustomed to the idea of passive consumption, creativity became increasingly marginalized.

The one-to-many broadcast distribution model distorted our perception of creativity. A key characteristic of one-to-many distribution is the role of the gatekeeper: the corporation which decides what we, the public, get to read, watch or listen to. The roles of creator and consumer are starkly defined and contrasted. As the public grew accustomed to the idea of passive consumption, creativity became increasingly marginalized, at least in those areas covered by copyright.  ACTIVISM Creativity was perceived as capable of flourishing only through the patronage of the movie studios, the record companies or the TV stations.

The industrial technology behind printing, broadcasting and vinyl duplication is expensive. Copyright law grants a monopoly which enables the distributors of media to invest in the capital infrastructure required for their packaging and distribution. These are the businesses which grew fat on the monopolies so granted, and they succeeded in convincing the public that it was the corporations’ role to provide, and the public’s role to pay and consume.

The original social approach to creativity did not become extinct as the dominant producer/consumer mode became established, even for media (like music, for example) where it applied. Andrew Douglas’s film Searching for the Wrong-Eyed Jesus shows that a visitor to the late 20th century Appalachians of the American South may well be asked: “What instrument do you play?” If the visitor answers: “I don’t play any”, the questioner will go on to say: “Ok, so you must sing.”

Steven Johnson in Where Good Ideas Come From makes the convincing case, based on a mass of evidence, that the social mode is more effective at maximizing creativity than relying on lone inventors and creators sitting in their garrets and sheds. Lone creators make good central figures in a compelling narrative – one reason why this meme is so popular. However, examining the truth behind the narrative often reveals that any creative work has much broader parentage than the story suggests. James Boyle in The Public Domain reveals the story behind the Ray Charles song I Got a Woman, tracing it backwards to Gospel roots, and forwards to the YouTube mashup George Bush Doesn’t Care About Black People, which sprang to prominence in the aftermath of Hurricane Katrina. To be sure, companies sometimes tried to foster a social model within the organization, but as Johnson points out, the benefits of social creation increase very dramatically with the size of the pool of participants, due to network effects. Until company silos are able to combine, the beneficial effects are relatively small.

Technology is Expensive

The internet has proved hugely disruptive.  TREND: NETWORK SOCIETY The sharing and social nature of Web 2.0 has enabled the rediscovery of the natural, human, social mode of creative endeavour. The social side of the internet is dominated by individuals acting in their private capacity, outside the scope of businesses. Companies were initially wary of losing control over the activities of their staff, and regarded internet social activities as time-wasting at best. In the worst-case scenario, businesses saw online social networking as a potential channel for employees to leak the company’s valuable intellectual property, and were therefore often slow to see the benefits of social interaction in terms of benefits to their creativity. As they have seen the benefits accrue to their competitors, however, compa-nies are starting to embrace a more open mode of business.

A return to the social mode is not without its setbacks. The internet radically lowered the barrier to entry for collaborative participation, and consequently increased the number of potential contacts that an entrant can make.  SHARING This immensely powerful engine of creativity comes with a brake that inhibits its full capacity: the effect of unfit-for-purpose copyright laws.

The copyright laws of the broadcast era do more to assist the incumbent gatekeepers (the film companies, music companies and so on) than to promote the social mode of  CO-CREATION collaboration. A side effect of the digital world is that almost every form of digital interaction involves copying of some sort. Whereas copyright law had nothing to say about sharing a book with a friend by lending it to her, in the digital realm, lending her a digital copy of Nineteen Eighty-Four to read on her e-book reader or computer involves a form of copying which may potentially violate copyright law.

The broadcast-model gatekeepers have used this unintended side effect of copyright law to their advantage, taking action against private individuals who had no intention of monetary gain, including mash-up artists,  REMIX home video enthusiasts and slash fiction authors. Incumbent rights holders, fearful of losing their profitable monopoly-based businesses, have sought to extend their rights ever further by lobbying governments (frequently successfully) to legislate for new and increased intellectual property rights, extending such rights far beyond their original purpose and intention. To put the issue in context, it is necessary to ask a fundamental question: what is copyright for?

Thomas Jefferson was one of the most lucid writers on the topic. He understood well the unique nature of knowledge:

“If nature has made any one thing less susceptible than all others of exclusive property, it is the action of the thinking power called an idea, which an individual may exclusively possess as long as he keeps it to himself; but the moment it is divulged, it forces itself into the possession of every one, and the receiver cannot dispossess himself of it. Its peculiar character, too, is that no one possesses the less, because every other possesses the whole of it. He who receives an idea from me, receives instruction himself without lessening mine; as he who lights his taper at mine, receives light without darkening me. That ideas should freely spread from one to another over the globe, for the moral and mutual instruction of man, and improvement of his condition, seems to have been peculiarly and benevolently designed by nature, when she made them, like fire, expansible over all space, without lessening their density in any point, and like the air in which we breathe, move, and have our physical being, incapable of confinement or exclusive appropriation. Inventions then cannot, in nature, be a subject of property.” 1

A Monopoly is a Bad Thing

Jefferson did admit that creative people should be given a limited right of exclusive control over their creations. A monopoly is inherently a bad thing, a fact that was recognized in the late 18th century, as it is today. Nonetheless, a monopoly of control in the form of copyright or a patent was the most convenient way of enabling the creators to be remunerated for their work. And once the monopoly expired, the idea would be freely available to all and would become part of the common heritage of mankind, to be used without restriction by anyone. The necessary (but limited) monopoly includes ‘copyright’. The principle that the restrictions should be the minimum possible to achieve that aim should be copyright’s golden rule.That golden rule has been repeatedly ignored. The scope of protection has increased steadily over the last three hundred years, to the extent that the protection granted in Europe to the author of a novel, for example, lasts for seventy years after his or her death. Materials that are not restricted by intellectual property are considered to be ‘in the public domain’. Commentators have become increasingly strident in arguing that the public domain is a public good; it is likely that Jefferson would have agreed. In the same way that common land is an area where anyone can allow their animals to graze, the public domain has been described as a commons of knowledge, where potentially anyone can graze on the intellectual creations of others. The public domain has one crucial difference from a commons in the tangible world: a meadow open to all can easily be over-grazed and ruined, so that it becomes of use to no one (sometimes referred to as the ‘tragedy of the commons’). It is impossible to exhaust the commons of knowledge and ideas.

The Tragedy of the Commons

The modern ‘tragedy of the commons’ is that, just as the internet makes it easier to pass ideas and knowledge  KNOWLEDGE from one person to another (for “the moral and mutual instruction of man, and improvement of his condition”), it seems that legislation and the more extreme activities of the rights holders are making it more difficult for those ideas and knowledge to enter the commons in the first place. This is because the duration of intellectual property is constantly being extended (will the early Mickey Mouse films ever enter the public domain?), and so is its scope, as evidenced by the patenting of genes or plants. Increasingly, people are becoming aware of the value of the commons and are seeking to protect it. At the same time, we are gradually realizing that the monopoly granted by intellectual property laws is a blunt instrument, and that people are prepared to create for reasons other than the expectation of payment for the use of their creation. Copyright law does not always have to work against the commons. Free and open source software has been an undeniable success. Gartner confidently states that all businesses today use at least some free software in their systems; the Linux Foundation is predicting that free software will underpin a $50 billion economy in 2011. Following from these and other successes, the applicability of the open source model has been considered in other contexts.

The Creative Commons Licenses

One of the most prominent open source models has been the Creative Commons  CREATIVE COMMONS movement. Founded in 2001, Creative Commons has written a suite of licences which were inspired by the GNU/GPL, but which are intended for use in relation to a broad range of media, including music, literature, images and movies. The licences are drafted to be simple to understand and are modular, in that the rights owner can choose from a selection of options. The attribution option requires that anyone making use of the work makes fair attribution to the author; the share alike option is akin to the GPL, in that if a licensee takes the work and redistributes it (whether amended or not), then the redistribution needs to be on the same form of licence; the no derivatives option means that work may be passed on freely, but not modified, and the non-commercial option means that the work can only be used and distributed in a non-commercial context.

There are now millions of different works available under a Creative Commons licence: Flickr is just one content hosting site which has enabled Creative Commons licensing as a search option. There are, at the time of writing, nearly 200,000,000 Creative Commons-licensed images available for use on Flickr alone. Similar sites provide music and literary works under a Creative Commons licence. Creative Commons provide a legal infrastructure for designers and other creatives operating within the digital domain to adopt this model. They also offer an effective choice as to whether an appropriate model is GPL-style share-alike, or BSD style. Where designers’  DESIGNERS work moves into the physical world, matters become much less straightforward. The movement of hardware design into the commons has been difficult. The fundamental issues can be summarized as follows:

→ In the digital world, the creator has the choice of whether a GPL or BSD model is appropriate. This choice does not translate well to the analogue world.

→ Digital works are relatively easy to create and test.on low-cost equipment. Analogue works are more difficult to create, test and copy, which creates barrier-to-entry problems.

→ Digital goods are easy to transport; analogue goods are not. This creates a barrier to the communication necessary to get the maximum benefit out of network effects.

The barrier to entry for any participant in a digital project is remarkably low. A low-cost computer and basic internet access are all that is required to have a system capable of running the (free) GNU/Linux operating system, accessing (free) project hosting sites like sourceforge.com or koders.com. A vast range of tools required to develop software (such as GCC – the GNU Compiler Collection) are also available as free software. Copying purely digital works is trivially easy. Physical (or ‘analogue’) objects are a different matter.

Hardware development is likely to require more intensive investment in equipment (including premises in which the hardware can be placed), not just for development, but for testing. Electronic digital hardware is probably closest to software in terms of low barrier to entry: for example, the open-source Arduino microcontroller project enables an experimenter to get started with as little as $30 for a basic USB controller board (or less, if the experimenter is prepared to build the board). Arduino’s schematics, board layouts and prototyping software are all open source.  BLUEPRINTS However, Arduino-like projects represent the lowest barrier to entry in the hardware world.

Complications of Analogue

An Arduino-style project is essentially a hybrid of the analogue and the digital domains. Prototyping software makes it possible to develop Arduino-based hardware in the digital domain, where it retains all the characteristics of the digital world: ease of copying, the ability to upload prototypes to fellow contributors for commentary, assistance and the chance to show off. These are characteristics which enable network effects, and which make the open source model very powerful. It is only when the project is implemented as a physical circuit board that these characteristics are lost.

The analogue world is not always so simple. One of the most ambitious open source projects is the 40 Fires/Riversimple hydrogen car project, which has developed a small urban car (the Hyrban) powered by hydrogen, using a fuel cell/electric drivetrain. Elements of the design (such as power control software or the dashboard user interface) can be developed largely in the digital domain, but the development of motors, brakes, the body shell and so on are strictly analogue only.  WYS ≠ WYG Not only do these analogue elements present a large barrier to entry for interested tinkerers, but they also tend to restrict their ability to participate in the development community: a necessity if network effects are to work. It is, clearly, difficult to upload a car to a development site and say “can you tell me why the windscreen leaks?”

Copyright protects the expression of an idea. Retaining the same idea, but recasting the expression of it in a different form, does not infringe on the copyright.

Another significant issue is the lack of access to design software at a low cost. Software developers have access to high-quality tools like development environments and tools available for free under free software licences. There is no similar suite of CAD software, and proprietary CAD software is notoriously expensive. The barrier to entry is raised once again.

Many of these issues are surmountable, given time. Ever-improving simulation software means that more and more testing and prototyping can be undertaken in the digital domain. The introduction of 3D printers PRINTING like the RepRap means that it is becoming increasingly affordable and feasible to print physical objects, such as gears, from a variety of plastics. The lack of suitable CAD software is being addressed by a number of projects.

For designers, progress in open source tools, increased connectivity and so on makes the establishment of open source communities ever more feasible. The legal issues, however, are less straightforward.

So far, we have concentrated on copyright issues. In some ways, other forms of intellectual property pose greater challenges. Copyright protects the expression of an idea. Retaining the same idea, but recasting the expression of it in a different form, does not infringe on the copyright. The story of two people from warring tribes meeting, falling in love, and dying in tragic circumstances can be told in a myriad of different ways, each with their own independent copyright, none of which infringes on anyone else’s copyright. This has two practical consequences. The first is that if a creator creates something which he or she has not copied from something else, then the creator will not be in breach of copyright, even if their creation turns out to be very similar, or even identical, to someone else’s. The second is that if a component of something is found to be infringing on a copyright, it is possible to salvage the project by recasting the same idea in a different expression.  REMIX

Design Rights

Copyright also has the advantage of being (reasonably well) harmonized worldwide, and has also proved amenable to hacking (e.g. by Richard Stallman)  HACKING so that it can be used to guarantee openness in the code it covers. However, other forms of intellectual property protection are more problematic for designers.

This issue is linked to the distinction between the analogue and digital domains. Designs almost invariably start with some sort of drawing or description, which is protected by copyright as a literary or artistic work. Often, this material will be digital in nature. At this point, it is similar to software. Licensing options include the suite of Creative Commons licences. Once an item is created in the physical world, a different set of legal considerations applies.

The most obvious is design right. Unfortunately, design right is complex and uncoordinated. There are many different types of design rights, and they differ from country to country. In the UK, for example, there are four separate design right regimes operating simultaneously. Depending on the right in question, they cover aspects such as shape, texture, colour, materials used, contours and ornamentation. Registered designs are in many ways similar to patents; in fact, they are sometimes called petty patents or design patents. Infringement can be unintentional, and independent creation is irrelevant. Unregistered designs are more in the nature of copyrights, and are vulnerable to infringement only where copying has taken place. The very fact that registration of design rights is required in itself provides a barrier to entry for collaborative projects, whereas copyright arises automatically and without the necessity of registration. On a collaborative project, who will pay for the preparation of a design registration, and who will make the application and maintain it?

Patents

Patents provide a particular problem for both programmers and designers, as they can impinge on both the digital realm and the analogue realm. Patents are a protection on the idea itself. Regardless of how that idea is expressed, its expression would represent patent infringement. Independent invention does not excuse patent infringement. The only way to be sure that an invention does not infringe a patent is to do an exhaustive check in patent offices worldwide. Such checks are very rarely carried out, since the expense is enormous and creates a vast barrier to entry for small businesses. US law in particular applies a positive disincentive to search: if a search is undertaken, then the searcher can be deemed to have knowingly infringed a patent – even if their reasonable determination was that the patent was not infringed – and will be liable to triple damages as a consequence. Pressure groups are lobbying worldwide for a reform of the patent system and process, but at present it is clear that the system benefits incumbent large companies with an existing patent portfolio.

The upshot of the intellectual property issues is that the BSD model is the only viable option in the hardware, analogue world. In contrast, those operating wholly in the digital domain (which includes programmers, but which can also extend to digital creatives such as filmmakers, novelists or graphic designers) have the ability to choose whether they prefer the GPL model to the BSD model, for a number of reasons. In brief, the two main reasons are as follows:

Copyright, being largely universal, automatic, unregistered and long-lasting, is better suited to the development of a copyleft model than other forms of intellectual property. The difference in cost between copying and reverse engineering  WYS ≠ WYG (which is vast in digital world, but much smaller in the analogue world), makes the copyleft a less compelling problem. A more detailed discussion of these reasons is needed to clarify why they are pertinent.

The system benefits incumbent large companies with an existing patent portfolio.

If a GPL model were applied to hardware designs, in order to be effective, it would need to impinge on the ideas underlying the design (patents), or on the visual characteristics of the design (design rights). A GPL-style model based on patents would likely fail because of the cost, complexity, and time involved in applying for the patents – not to mention the necessity of keeping the invention secret prior to its publication, since part of the application process squares badly with the open source ethos. If the model were based on design rights, it would fail in relation to registered design rights, for the same reasons as for patents. If it were based on unregistered design rights, it would be unlikely to work because the scope and length of protection would be too short, and because the rights are insufficiently universal (although there is some scope for a limited GPL-style model in relation to unregistered design rights). Even if a GPL model were feasible in the world of hardware, there is an economic reason why it would be unlikely to work. The reasoning is as follows: the digital world makes things extremely easy to copy. Imagine a programmer wants to create some software based on a program with similar functionality to a word processor released under the GPL. The options are either to take the original GPL program, modify it, and release the result under the GPL; or to take the GPL program, reverse-engineer it, and rewrite a whole new program from scratch, which would be unencumbered by copyright restrictions. There is a vast difference in the amount of work involved in the two scenarios, and any programmer is likely to consider very seriously adopting the easier, cheaper and quicker option (modifying the original), where the ‘cost’ is licensing under the GPL. However, to offer a different example, even if there were a functioning mechanism for applying share-alike to a mechanical assembly, an engineer wishing to reproduce the mechanical assembly would, in effect, have to reverse-engineer it in order to set up the equipment needed to reproduce it. Copying a digital artefact is as simple as typing:

cp old.one new.one

Copying an analogue artefact is vastly more difficult. REPRODUCTION Consequently, there is little difference between slavish copying, which would invoke GPL-like restrictions, and reverse-engineering and re-manufacturing, which would not. In this case, it is much more likely that the ‘cost’ of GPL-like compliance would be greater than the benefits of having a GPL-free object. In conclusion, even if GPL-style licences were effective in the physical world, economics would tend to disfavour their use.

It can therefore be stated that designers operating in the analogue realm are likely to be restricted to an openness model more akin to BSD than to GPL. Their challenges are to make this model work, and to discourage free riders with a combination of moral pressure and a demonstration that playing by the community norms will be beneficial both to them, and to the community as a whole.

Benefiting from Connected Creativity

Designers and creators are increasingly able to benefit from the promise of the connected, social mode of creativity. The way was paved by free software pioneers, who skilfully hacked  HACKING the copyright system to generate a commons which has not only generated a huge global business, but also provided the software which runs devices from mobile phones through to the most powerful supercomputers. It provides the software which gives the developing world access to education, medical information and micro-finance loans and enables them to participate in the knowledge economy on similar terms to the developed nations.

Designers and creators are increasingly able to benefit from the promise of the connected, social mode of creativity.

The challenge for designers and creators in other fields is to adapt the model of software development to their own field of work, and to counter the extensive efforts of incumbent beneficiaries of the broadcast era to use ever more draconian legislation to prop up the outmoded business models. Ultimately, the social mode will win: it takes one of humanity’s defining characteristics, the fact that we are highly social and community-oriented, and uses it as the foundation of the entire structure. One-to-many works against this fundamental trait, but Nature will ultimately triumph.


GNU/GPL AND BSD LICENSES

In the late 1980s, computer programmer Richard Stallman realized that copyright law could be turned inside out to create a commons of computer software. The method he proposed was simple, but brilliant.

Software is protected by copyright. The software business model used in the 1980s involved granting customers permission (the licence) to use a specific piece of software. This licence was conditional on the customer not only paying the software publisher fee, but also adhering to a number of other restrictions (such as only using the software on one computer). Why not, Stallman reasoned, make it a condition of the licence that if you took his software and passed it on (which he was happy for people to do), then they had to pass it on, together with any changes they made, under the same licence? He called this sort of software ‘free software’: once a piece of software has been released under this sort of licence, it can be passed on freely to other people, with only one restriction: that if they pass it on, in turn, they must also ensure that it is passed it on in a way that guarantees and honours that freedom for other people.

In time, he reasoned, more and more software would be released under this licence, and a commons of freely available software would flourish. The most widely used version of the licence is the GNU General Public License version 2, known as the GPL. In the 19 years since it was issued, it has become the most commonly used software licence. The GPL is the licence at the core of Linux, the computer operating system which powers Google, Amazon and Facebook, and which enabled Red Hat to forecast revenue in excess of $1Bn in financial year 2010-11.

The software commons envisioned by Stallman not only exists; by any measure, it has been an overwhelming success. Its success can be measured in countless ways: the number of participants creating software for that GPL commons, the number of open source software programs in use, or the environments in which such software can be found. More than 90 of the 100 most powerful computers in the world run on GPL software, not to mention mobile phones and in-car entertainment systems; open source software is at the core of the business offerings of such large companies as IBM and Red Hat.

The Commons Analogy

The success of free software cannot be solely attributed to the GPL. The GPL extracts a price for using the commons. To risk taking the analogy too far, a landowner who has property adjoining the GPL commons and who wants to use it also has to add his own land to the commons. (Remember, this is the magical land of ideas which cannot be ruined by over-grazing.) This will have the effect of increasing the size of the commons as more and more adjoining landowners want to make use of the commons and donate their own land in the process. However, many of them may not want to join this scheme, either because they do not want to add their own land to the commons, or because they have already pledged their land to another commons.

Is it possible to generate a commons of ideas without forcing participants to pay the price of entry; without requiring that they add their own adjoining land to the commons? Is the compulsion of the GPL necessary, or is the social and community dynamic powerful enough to allow a similar commons of ideas to spring up on its own?

The software industry has given us several outstanding examples of this. Apache, the most popular web server software in the world, used by many of the world’s busiest web sites, is issued under a licence which does not ask users to pay the GPL price. Anyone can take the Apache code, and modify it and combine it with their other software, and release it without having to release any sources to anyone else. In contrast to the GPL, there is no compulsion to add your software to the Apache commons if you build on Apache software and distribute your developments, but many people choose to contribute in return even without this compulsion. FreeBSD, to take another example, is an operating system bearing some similarity to GNU/Linux which is licensed under a very liberal licence allowing its use, amendment and distribution without contributing back; nonetheless, many people choose to do so.

Free Riders

A parallel development to the GPL was the BSD licence, first used for the Berkeley Software Distribution (BSD). As opposed to the GPL, the BSD licence only requires the acknowledgement of the original authors, and poses no restrictions on how the source code may be used. As a result, BSD-licensed code can be used in proprietary software that only acknowledges the authors.

The GPL tackles an issue called the free rider problem. Because BSD does not compel people to contribute back to the commons, those who take advantage without contributing back are called free riders. The question is whether free riders really are a problem (as the GPL band would maintain), or whether they are (as the BSD band would maintain) at worst a cost-free irritant, and at best, a cadre of people who will eventually see the light and start to contribute, once they recognize the benefits. Supporters of both the GPL and BSD models of licensing have similar aims. In both cases, they seek to support a software commons which will enable the social mode of creativity to flourish.

While the BSD model could subsist in the absence of copyright, GPL relies (perhaps ironically) on copyright law to enforce its compulsion to share. It still remains an open question as to whether the better model is to use licensing to compel people to participate in the software commons, thus reducing the free rider problem (as with GPL), or whether voluntary engagement will result in a more active community (as with Apache). Designers working outside the digital domain will rarely have the chance to choose a GPL-style option.


RIGHTS AND LICENSING SCHEMES

The re-use of designs is governed mainly by copyright, design rights and patents. Traditional open licensing schemes have been based on copyright, as this is the main intellectual property right which impinges on software, the most fertile ground for openness.

Software licensing schemes include the GPL (which enforces copyleft) and BSD (which doesn’t). Software licences rarely work properly when applied to other works. For literary, graphic and musical works, the Creative Commons suite is more effective. They allow both copyleft (share alike) and non-copyleft options. They may work well when applied to underlying design documents, which are covered by copyright, and control the distribution of those documents, as well as the creation of physical objects from them, but (depending on the jurisdiction) their protection is unlikely to extend to copying the physical object itself. Some efforts have been made to create licences that cover hardware; the TAPR Open Hardware Licence is one example. However, these efforts have frequently been criticized for their lack of effectiveness.

www.opensource.org/licenses/index.html


CREATIVE COMMONS AND DESIGN RIGHTS

Creative Commons licensing is fundamentally based on copyright, and there is little clarity or consensus on how such licenses would operate in relation to design rights across the myriad different jurisdictions and types of rights.

Those designers operating purely in the realm of copyright will find that there is already an existing structure of support in terms of Creative Commons licences and associated communities. Where other forms of intellectual property impinge, matters are far more murky. The Creative Commons licences are arguably drafted to be sufficiently broad as to cover unregistered design in certain circumstances. However, since they were not drafted with design rights in mind, it cannot be assumed that the copying of a three-dimensional object will automatically fall within the scope of such a license.

www.creativecommons.org


STRUCTURE OF INTELLECTUAL PROPERTY

The rule of thumb for intellectual property is that all works are considered to be in the public domain, with intellectual property protection as the exception. However, this exception is highly diversified. Copyright protects the creative, original expression of an idea, whereas patents protect the idea itself and its technical specifications. Design rights cover aspects such as shape, texture, colour, materials, contours and ornamentation. Other forms of protection include trademarks, database rights and performers’ rights.

  1.  Jefferson, T. Letter to Isaac McPherson, 13 August 1813. The Writings of Thomas Jefferson. Edited by Andrew A. Lipscomb and Albert Ellery Bergh. Washington: Thomas Jefferson Memorial Association, 1905. Vol. 13, p. 333-334. Available at http://press-pubs.uchicago.edu/founders/documents/a1_8_8s12.html , accessed 11 January 2011.
]]>
http://opendesignnow.org/index.php/article/authors-and-owners-andrew-katz/feed/ 506
Remix http://opendesignnow.org/index.php/visual_index/remix/ http://opendesignnow.org/index.php/visual_index/remix/#comments Thu, 26 May 2011 11:32:52 +0000 remko http://opendesignnow.org/?p=329 Continue reading ]]> Remixing is something that comes from deep within us. A child learns by remixing his or her parents’ behavior. Nothing novel is so new it does not relate to anything remotely similar. Originality can be regarded a strange obstacle to innovation, comparing the Western world to China. The remixing mindset is an enormous source of creativity – the Chinese refer to it as Shanzhai. Would open design be possible without it? Would culture be possible without it? What is the difference between jazz and casemodding?

FORM FOLLOWS FUN: SHANZHAI TERRACOTTA ARMY PHONE

FORM FOLLOWS FUN: SHANZHAI POOH-PHONE

FORM FOLLOWS FUN: SHANZHAI CIGARETTE BOX PHONE

CHANEL-STYLE PILLBOX PHONE

CHANEL-STYLE PILLBOX PHONE

SUPERSIZE ME: SHANZHAI PHONE WITH A TELELENS

IPOD STYLE SHANZHAI PHONE

EXTRA FEATURES: SHANZHAI PHONE THAT RUNS ON WINDOWS 98

EXTRA FEATURES: WATCHING CCTV ON YOUR SHANZHAI PHONE ➝ (UN)LIMITED DESIGN CONTEST / BAS VAN ABEL

COUNTERFEIT BECOMES COUNTER CULTURE

WYSIWYG: THE OFFICE OF CHINESE LIQUOR BRAND WU LIANG YE

ALL THESE IMAGES ARE READILY AVAILABLE IN VARIOUS PLACES ON THE INTERNET AND BELIEVED TO BE IN PUBLIC DOMAIN. MANY THANKS TO FOLLOWING BLOGS: WWW.SHANZHAIJI.CN , WWW.M8COOL.COM

]]>
http://opendesignnow.org/index.php/visual_index/remix/feed/ 467
CO-WORKING / MICHELLE THORNE http://opendesignnow.org/index.php/case/co-working-designing-for-collaborative-consumption/ http://opendesignnow.org/index.php/case/co-working-designing-for-collaborative-consumption/#comments Tue, 24 May 2011 14:57:05 +0000 remko http://opendesignnow.waag.org/?p=222 Continue reading ]]> DESIGNING FOR COLLABORATIVE CONSUMPTION.

The 20th century was the unfortunate era of hyper- consumerism. You know the stats: basically, the world is ending, and we, the insatiable consumers of the world, are at fault. Traditionally, there are two solutions for what to do with all the junk we buy and collect. You can dispose of it, or you can store it. Yet both options bring their own set of troubles, be it overflowing landfills or premium rent on storage.

Michelle Thorne

As Bruce Sterling says, every moment devoted to stumbling over and tending to your piled debris are precious hours in our mortal lives, and time not spent with family, friends, your community, yourself. The things you own end up owning you.1 So, with all this doom and gloom, is there any reasonable way to take action?Can we even make ACTIVISM a difference? There is one clear advantage we have in our generation: the power of the network.

We can leverage our networks. Unlike any generation that came before, we can provide and share infrastructure better thanks to network technology. We can buy, build, and collaborate locally and efficiently. We can shop smarter, share better, and use our networks, both online and off, to reduce waste, improve the economy and environment, and spare our bank accounts, and even have a good time and make new friends doing it. COMMUNITY

That’s Collaborative Consumption

Think about co-working spaces, for example. You can rent a desk and share office infrastructure together with fellow digital nomads. No one, besides the people who actually run the space, have to own any of the equipment, and even they can lease or rent it from other companies. A huge advantage of a co-working space is that it makes it easy and attractive to share these resources, and by doing so, they make it more efficient (and let’s be honest, more fun and social) for all of the people working here.

Let’s think about other types of resources. Who needs to actually own a moving van? Not many folks. That’s why services like Robben & Wientjes, a moving truck rental company in Berlin, are successful. The same holds true for platforms like the US-based car sharing service Zipcar, or airbnb and Couchsurfing – or even the Bahn bikes, Mitfahrgelegenheit, and stuff-sharing sites like NeighborGoods.2 All of the many, many sites out there now make it easy to offer, find, and share goods and services: flexibly, agilely, and socially. SHARE

Here’s another example: the common household drill. Do you own a drill? If so, can you even remember the last time you used it? Did you know that on average, a household drill is used a total of just 5-10 min its entire lifetime? That gives you what, like 20 holes max? Is that really an efficient object to purchase, maintain, and care for? What if instead of all that time it spent idling on the shelf, it could be generating value, either by renting it out for cash or just helping out a neighbour?

Products like household drills, or moving vans, or a bike in a city you’re visiting aren’t necessarily desirable to own. Instead, isn’t it just better to access them? Aren’t the rights to use and access more important than owning it? This is a mantra for our times, for the century of collaborative consumption: Wealth as a whole consists in using things rather than in owning them. 3

Design Challenges

Here are a few design challenges for collaborative consumption:

Create open layers. Think about interoperability across key components. How can you use open standards to enable remixing, modification, and improvements across products? REMIX How can open layers be applied to motors, power cords, outlets, connectors, joints, nibs for maximal customization and range of use?

Build modularity. Similarly, shared objects should be easytorepair REPAIR andmodify.Youshouldn’thaveto throw away your entire phone because it’s scratched. Building modularity means fostering generativity.

Value added through usage. I think this is one of the most powerful design challenges. Think about an object that doesn’t depreciate with use, but is instead improved by it. One example is a baseball mitt. When you first buy it, it’s very stiff and hard to catch a ball with. Over time, with use, it becomes more flexible and a better product. That’s just on the physical layer. What about value added on a data layer? Think about how objects can learn from behaviours the more they’re used. Like by collecting more data points. Or where the user contributes metadata, like marginalia, reviews, and fact-checking for books.

Personalize shared objects. Are you familiar with these phones that hold multiple SIM cards? Those are really common in places like Africa where one device is used by multiple people. Each person inserts their own SIM card and all their address books and personal settings are ready for them. The personalization follows the user, not the device. Can we apply this to other devices and services? Cars, printers, refrigerator, coffee machines, or even drills?

Diversify libraries. Libraries are not just for books. Think about other ways to pool resources, be it for commercial or community aims. You could have libraries of tools, or libraries of electronics, cooking appliances, moving boxes, jewellery and accessories, holiday decorations, toys, you name it. BLUEPRINTS It has huge potential. There are many business opportunities here, as well as many challenges to be solved by creative and adventurous people.

Let’s break the mould. Don’t design for the dump. RECYCLING Don’t design for 20th-century hyperconsumption. Design for things to last, to be shared, and to be part of the future: a future of collaborative consumption.

Link: coworking.com

  1. Fight Club, Dir. David Fincher. Perf. Brad Pitt. Fox 2000 Pictures, 1999.
  2. Botsman, R and Rogers, R, What’s Mine is Yours: The Rise of Collaborative Consumption. Harper Business: New York, 2010.
  3. Aristotle, Rhetoric, Book I, Chapter 5, 1361a, trans. W. Rhys Roberts. Princeton University Press: Princeton 1984, available online www2.iastate.edu/~honeyl/Rhetoric/rhet1-5.html , accessed 14 january 2010.
]]>
http://opendesignnow.org/index.php/case/co-working-designing-for-collaborative-consumption/feed/ 0