Open Design Now » hello world http://opendesignnow.org Why design cannot remain exclusive Thu, 13 Dec 2012 09:32:59 +0000 en hourly 1 http://wordpress.org/?v=3.3.1 (UN)LIMITED DESIGN CONTEST / BAS VAN ABEL http://opendesignnow.org/index.php/case/unlimited-design-contest-bas-van-abel/ http://opendesignnow.org/index.php/case/unlimited-design-contest-bas-van-abel/#comments Fri, 27 May 2011 09:55:57 +0000 remko http://opendesignnow.org/?p=473 Continue reading ]]> (Un)Limited Design contest
Experimenting with Open Design

Bas van Abel

Open design covers an extensive area and its contours are not yet clearly defined, making it difficult for designers to come to grips with the developments. One of the most tangible open design experiments was the (Un)limited Design Contest, which challenged the designers to try something out and experience for themselves what happens next. Alexander Rulkens (Studio Ludens), 1 Sylvie van de Loo (SEMdesign) 2 and Goof van Beek 3 share their experiences.

All designs that were submitted were made with digital manufacturing technology, using machines that turn digital designs into physical products. Digital manufacturing offers the designer many new possibilities. Professional designer Sylvie van de Loo used a computer-controlled laser cutter to create her Fruit bowl 128DOWNLOADABLE DESIGN The bowl is constructed from 128 pieces cut out of cardboard. Her initial idea was to work out a prototype of the bowl in clay. As she was drawing the bowl in 3D on the computer with a friend, she began checking the possibilities for manufacturing the product digitally. For this, she went to the Fab Lab in Utrecht.

Sylvie: “I’ve been in the Fab Lab before, but I didn’t see the potential for my own work at that time. I thought it was all a bit too technical; I felt that a creative approach was lacking. Now I’m discovering that the technique is an important source of inspiration to me.” Sylvie took the advice to turn her bowl into a technical drawing program, which was capable of breaking the 3D form up into sectional planes with a specific width. This approach allows her to generate forms for different materials, which are then cut out with the laser cutter.
AESTHETICS: 2D It is a fairly technical process, which has had an important influence on the creative process and was one of the deciding factors in the final form and appearance of the end product.

Sylvie: “Working with the laser cutter was really a revelation for me. What a cool machine! Anything is possible. You can form 3D layers out of 2D layers. It’s very precise, and you can engrave the most beautiful forms with it. Because you yourself get to work with the prototyping technology, the process of making it is a valuable addition to the final design. If I hadn’t had the chance to experiment with the machine, the definitive form and choice of material would never have occurred to me.”  HELLO WORLD

But still, designer Alexander Rulkens van Studio Ludens feels there is a great deal of room for improvement in how people gain access to the designing process and machines.  ARCHITECTURE Alexander: “I think the Fab Lab concept can benefit from better interfaces to wield the great power that the technology can give.” He didn’t submit a product for the contest; instead, he submitted a software tool that enables everyone to create their own design easily.

Sharing for Yourself

It’s clear that access to technology offers new possi-bilities, but what possibilities does sharing creative work offer the designer? Goof van Beek won the design contest in 2009; his design received extensive publicity. Goof: “It’s fun when people come up and talk to you because they saw your design somewhere. I’m not sure if it really was the open nature of the design that gave the dress the amount of attention that it got, but it was a good first introduction to the reality outside the environs of my study. Meanwhile, I have been approached to take part in an exposition.”

It could be that the conditions of the contest played a role in this: under the (Un)limited Designs terms, the design could be published and shared without prior approval from the  DESIGNER designer. On the one hand, this made it possible for the designers to establish a name for themselves more quickly, and a company that finds the product interesting knows who to go and talk to. However, it also means that designers have given their permission for others to adapt the design and publish their derivative design. “It is a bit scary, but it also has its advantages,” says Sylvie. “The bowl is finished as far as I’m concerned, and I think it’s really great that someone else could pick it up and give it their own twist.”

She isn’t afraid this openness will stand in her way as a designer or harm her business interests. Sharing the design also associates her with the product as the original designer – and even if a design hasn’t been explicitly shared, the designer still always runs the risk of ideas being stolen.

Alexander emphasizes that it’s not just a business matter. Alexander: “The major benefit of sharing is the opportunity to get feedback on your thought and design process early on. You are opening yourself up to the knowledge of others, to different perspectives, which you need as a designer to come up with ideas that are relevant to society. The fact that your design is open to improvement ultimately means that it will be better suited to the people who are going to use it in their day-to-day lives.”

Signature

But looking at the entries in the design contest, only three products were submitted in the ‘fusion’ category. It’s a category that provides incentives for the re-use and re-interpretation of designs that had already been submitted.  REMIX Sylvie and Goof both expect that this has to do with the importance of the designer’s signature style, especially in a contest. Sylvie: “There is a difference between what you use from other designs as an inspiration for your own design, and basing your design entirely on somebody else’s. Originality is important to a designer, and designers aren’t used to explicitly recognizing others for contributing to their design. This makes us choose the safe way by inventing something new.’ Goof: “It’s strange that we don’t consider improving somebody else’s product a challenge, because I would really like to take a few designs in hand in my surroundings. I do know several designs that I think could be done better.” Sylvie thinks that education has an important role in forming this attitude. Sylvie: “At the academy, we were encouraged to be original by creating work that is unique and distinguished.  DESIGNERS I never saw any–one literally taking an existing design as a starting point for a personal interpretation or addition. Maybe we still consider ourselves too good to do that.”

Alexander has a somewhat more radical view. He believes that open design will essentially change the role of the designer. Alexander: “Designers will have to start listening better in a world where the designer doesn’t make the design decisions, but rather facilitates the process of designing decisions.” The meaning of a signature style is changing, as is the way in which we handle that signature style. Alexander: “We have to move towards a system where a person’s contribution to a design can be measured and that person can be given proper credit for their efforts. This means that the designer has to let go of the feeling that “it was my idea”.

It is not yet possible to draw hard and fast conclusions from the results of the (Un)limited Design Contest, EVENTS but it is clear that the designers will engage in the challenge. The most valuable aspect of this kind of experiment is that it enables us to explore certain aspects of open design. In the first edition of the contest, the question was still whether designers were willing to throw open their own design. The emphasis in the second edition was on compound products; the challenge for the third edition will probably be achieving a design dialogue between the contestants.

unlimiteddesigncontest.org

]]>
http://opendesignnow.org/index.php/case/unlimited-design-contest-bas-van-abel/feed/ 0
THINGIVERSE / ZACH SMITH http://opendesignnow.org/index.php/case/thingiverse-zach-smith/ http://opendesignnow.org/index.php/case/thingiverse-zach-smith/#comments Fri, 27 May 2011 09:55:14 +0000 remko http://opendesignnow.org/?p=471 Continue reading ]]> Thingiverse
How the Internet, Sharing and Digital Fabrication are Enabling a New Wave of Open Source Hardware

Zach Smith

Thingiverse.com was started on a lazy Saturday afternoon in late October 2008. I was at the local hackerspace, NYC Resistor, with my friend Bre Pettis. As usual, we were tinkering with our RepRap machine and dreaming of the day when 3D printing would be ubiquitous. As we worked, we chatted about what it would be like if you had a 3D printer that could make you anything you wanted. We decided that one of the coolest things would be the ability to download designs from the internet that your 3D printer would then turn into real things.

We then asked ourselves what that would look like. HELLO WORLD We did some quick Googling and found that almost all the 3D model repositories on the internet were behind paywalls. We were shocked and appalled; the future of digital fabrication was supposed to free us from the tyranny of distribution costs as we applied the techniques of free software to hardware. Being people who prefer action to words, we set out to build a site that reflected what we wanted the future to be.

Thingiverse  COMMUNITY was built from the ground up as a place for people to freely share their digital designs for physical objects. We built it to be as inclusive as possible. It will accept almost any digital file, so long as it a design for a real, physical object. In fact, most of the early designs on the site are vector drawings for laser cutters. Later, we branched out with support for 3D models, electronics, and designs intended for CNC machines.

Once the rough framework was in place, we started adding features to encourage open design and collaboration. The first step was a licensing system that allowed users to very explicitly state the licence which the listed files were available under. Designers can choose from a number of licences, including Creative Commons,  CREATIVE COMMONS GPL, LGPL, BSD, and Public Domain. The licensing is even available in a machine-readable format on the page itself. We also wanted to encourage collaboration  CO-CREATION by including a derivatives system that allowed people to upload modifications to a design. This feature was a hit because it allowed modified designs to easily give attribution, as well as creating a nice tree structure of all the derivative works available. This was a victory for both the designers and people who wanted to improve on designs that were already available. The designers got credit for the initial work, and the users were easily able to find the latest designs.

The result of this is that Thingiverse is now home to nearly 4,000 open source   OPEN EVERYTHING objects. It has over 5,000 active users and nearly 1 million downloads across all of the design files. It is home to a huge variety of open source hardware projects. On Thingiverse, you can download open source bottle openers, statues, robots, toys, tools, and even 3D printers.  REPRODUCTION It is the largest repository of open source hardware on the Internet and a wonderful place to share your things with the world.

www.thingiverse.com

]]>
http://opendesignnow.org/index.php/case/thingiverse-zach-smith/feed/ 0
JORIS LAARMAN’S EXPERIMENTS WITH OPEN SOURCE DESIGN / GABRIELLE KENNEDY http://opendesignnow.org/index.php/article/joris-laarmans-experiments-with-open-source-design-gabrielle-kennedy/ http://opendesignnow.org/index.php/article/joris-laarmans-experiments-with-open-source-design-gabrielle-kennedy/#comments Fri, 27 May 2011 08:39:42 +0000 remko http://opendesignnow.org/?p=417 Continue reading ]]> The mediocracy of the middle classes dominates the current mass production design. In a world less controlled by branding and regulations, a new breed of designers can contribute to an altered, more honest economy. An interview with Dutch designer Joris Laarman, contemplating his relationship to modernism and the modernist roots of open source design and digital fabrication.

Gabrielle Kennedy

There’s always something special about the top crop of Dutch design graduates, but every once in a while one comes along that makes everyone sit up and take notice. In 2003, that was Joris Laarman. His Reinventing Functionality project at the Design Academy of Eindhoven fused function with ornament and was snatched up by Museum Boijmans Van Beuningen in Rotterdam.

Design must accept some of the responsibility for creating many of the world’s current problems.

Since then, he has earned a reputation for himself as a designer with visionary ideas and a concern for societal issues. His first project out of school, the Bone Furniture range, was exhibited in the Friedman Benda gallery in New York, a limited edition series made from marble, porcelain and resin. While he calls it an “annoying coincidence” that much of his work has spawned major contemporary trends, it also testifies to its relevance to the issues that matter.

Furniture That Can Be Grown

Both those early projects clearly expressed Laarman’s highly specific views on modernism. The Bone range DESIGNERS resulted from a cooperative partnership with car manufacturer Opel, using software to design a series of artworks based on the organic way that bones form. Car parts are designed with the help of topology optimization software to increase strength and maximize the efficient use of materials. Furniture, as it turns out, can also be ‘grown’ by adding and removing material to maximize its strength and functionality.

Laarman’s stance is that functionality and extravagance are not mutually exclusive. Where modernism went wrong, and how its core advantages need to be readdressed, are what drive his research. What he is looking for are design solutions that possess a revolutionary quality. Much of his current research repudiates how things are currently done and patiently pursues a better way not just to manufacture, but also to distribute design.

Seen in this light, design must accept some of the responsibility for creating many of the world’s current problems. More importantly, it can play a key role in fixing them. In 2009, Laarman opened his Amsterdam studio to the public for the first time. His purpose was to share his thinking and his process. He wanted to reveal how design experimentation and research can create answers, not just pretty objects.

“In galleries and in Milan, people only ever see perfect pieces,” he says. “In this exhibition, I wanted people to see the research part of design, what is behind all the pretty shapes, and how they could eventually be of use in the world. I wanted people to understand what the future of design could look like using technological progress.”

Laarman hit a wall when he was researching open source design and digital fabrication. He realized that design had taken a wrong turn somewhere along the way and was now failing society. “I am not necessarily against how design is now,” he says, “but I do think the internet can provide a more honest way to design, make, distribute and sell things.” Not modernism, then; what’s needed is a new -ism. It takes some audacity for such a young designer to criticize the industry. Laarman has gone beyond theoretical criticism, underlining his opinion with some tangible ideas that he wants to try out – hopefully with the support of his contemporaries.

I do think the internet can provide a more honest way to design, make, distribute and sell things.

“I started to think of my work and of design in general as a sort of laboratory,” Laarman says. He explains it as a place where solutions might be found to the predicament created by over-production in the post-industrial age. “I’m not condemning the whole design industry,” he says, “or even questioning it. There is a lot of very good industrial production, and that will never go away, but I think it will soon be joined by another revolution made possible by the internet.” REVOLUTION

Despite its failures and the role it played in creating over-production, Laarman’s research kept bringing him back to modernism – not as an aesthetic per se, but as a philosophy. In 2010 Laarman was selected by Ingeborg de Roode, curator of industrial design at the Stedelijk Museum in Amsterdam, to participate in the Modernism Today series. “I guess she sees me as a sort of contemporary version of Rietveld,”  DESIGNERS says Laarman. “That is an interesting comparison, and I see some connection.” 100 years ago, Gerrit Rietveld experimented with technology and materials; Laarman does the same today. His aesthetic is not in the tradition of De Stijl, but his values most certainly are.

The Modernist Roots (of Open Design)

In line with those values, it made good sense to fuse Rietveld’s world of ideas and experiments with open source design and digital fabrication; both could be argued to have modernist roots. Open source has been revolutionizing the cultural content universes of music and software for almost a decade, so why shouldn’t it also be able to change the way design is both made and distributed?

“I think true modernists wanted open source design one hundred years ago,” says Laarman, “but back then it wasn’t possible. Rietveld published manuals about how to make his chairs, but nobody could really use that information, because there were no networks of skilled artisans. His designs look simple, but are difficult to construct. These days, we can distribute knowledge in a way that can potentially bring craftspeople back to the centre stage of design – not in an idealistic, naïvely romantic way, but in an economically sound way. All we need are the networks, and cheaper and more accessible digital manufacturing technology.” One of modernism’s core flaws was the huge amount of power that ended up in the hands of a few big factories and design firms. The movement was supposed to be about the democratization of design – that was their big idea – but somewhere along the line it became nothing more than an aesthetic. Of course there are some obvious differences between modernism and open source design. Modernism produced an international and generic style. Industrialization led to mass production, which meant production had to be centralized and its products transported across the globe from countries with the lowest wages at great environmental and economic expense. Information and knowledge were kept closed and protected by copyrights; even if they had been accessible, it would have been impossible for an individual to use the design data without access to exorbitantly expensive production tools. The quality of design produced was and continues to be guaranteed by the producer; in turn, the producer and the retailer divide the majority of sales revenues.

I think true modernists wanted open source design one hundred years ago.

Open source design, on the other hand, has the capacity to conserve culture and decoration as well as traditional skills by utilizing new technology.
Digital production makes mass customization possible. Open source makes information and knowledge public; in addition, it has low entry costs, quality control takes place in the form of peer review by the public, and revenues are divided between craft and creativity. Also, because the products of open source design can be produced locally, transportation costs are drastically reduced.

What open source design does is redistribute knowledge  KNOWLEDGE and the means of production. It has the potential to change everything that we know about design, from manufacturing to education. Open source design is anti-elitist insofar as it can create fairer and more honest prices. It is democratic and helps to create self-determination in an individual’s immediate environment. Ultimately, it takes power away from the huge multinationals and from production hubs like China and India and hands it back to craftspeople – those individuals rendered irrelevant by industrialization. In short, open source design could feasibly become this century’s new -ism.

Ultimately, it takes power away from the multinationals and production hubs like China and hands it back to craftspeople – those individuals rendered irrelevant by industrialization.

“This does not mean that anyone can make good design or that more rubbish can be produced,” Laarman says. “Just because everyone has a digital camera doesn’t mean that everyone is a photographer. I am not in favour of amateurism, but the way I envision the system working, the good will eventually be filtered from the bad.”  AMATEURISSIMO

Less Production Is Needed, Not More.

Statistics show that up until the Industrial Revolution, a similar amount of products were being produced every year. With industrialization came increased wealth and prosperity, which lead to massive increases in production. The result was more waste, more environmental damage  TREND: SCARCITY OF RESOURCES and a surge in unemployed artisans. The average Western person today has access to more things than Queen Victoria owned during her reign. “The tragedy is that the vast majority of what is being today made lacks creativity and quality and isn’t really needed,” Laarman says. “The over-production of mediocrity for the middle classes has created a difficult economic situation, and there is nothing that can be done about it within the current system.”

If digital design went local, imagine what this would mean for small producers. “Right now, most people are just talking about digital fabrication,” says Laarman, “but it is happening, and I think can eventually take over. I am not going to say it will change the world, but it will change the way things are made. 3D printing is still very limited,  AESTHETICS: 3D
especially in terms of materials, but as digital manufacturing technology evolves, anything is possible.”

One possible scenario would be for local communities to invest in technology. “There are already all kinds of initiatives popping up that give individuals the opportunity to start their own small production facilities,” Laarman says. “We are looking into setting up a sort of professional Fab Lab, for instance, where any design based on a digital blueprint could be mass-customized and made.”

It could work. The RepRap machine, for example, is an open-branded DIY 3D printing machine.  HELLO WORLD The RepRap is a machine that you can make yourself (and that can reproduce itself!)  REPRODUCTION that can in turn make other gadgets. “Right now, this sort of thing is the domain of geeks for geeks, but once it becomes more professional, it will be ready for more general usage,” Laarman says.

The average Western person today has access to more things than Queen Victoria owned during her reign.

Open source design and local digital fabrication could also revolutionize education, which has mostly become outdated and irrelevant. “We could tie the platform into trade schools,” Laarman says. “Education has fallen behind and kids are not being taught what is needed. Digital manufacturing should be taught in schools, especially at the vocational school level.”
These developments are slow, however, because open source design remains the great unknown, with many unanswered quandaries. The new, innovative nature of the ideas works both for and against them; instead of inspiring images of a world less controlled by branding and regulations, open source design ends up sounding chaotic, with too much choice and an over-abundance of experimentation and waste. Issues of copyright and profit-sharing scare off many, leaving a lot of the earliest experimental platforms looking unprofessional and insecure.  MANIFESTOS

But the problem for most of the current websites selling open source design is they lack professional participation. What’s needed is more of the best and most visionary design minds debating and devising ways to make it all work. “What is happening so far isn’t really making a difference, but it does show that there is huge potential,” Laarman says.

Creative Commons  CREATIVE COMMONS has made some interesting inroads. It is a new type of copyright that protects a designer (or anyone else) so that they can make licensing agreements with suitable producers or limit use of their ideas to personal use only. “It works in an idealistic sense if everybody plays nice,” says Laarman. It is still limited, though, and resembles a small-scale iTunes dominated by amateur musicians playing a limited number of instruments. What is needed next is a professional digital platform, or a network where people can meet, access and share information about how and where to have design digitally manufactured.

Digital manu­facturing should be taught in schools, especially at the vocational school level.

Make-Me .com

One exciting project already under way, albeit in its nascent stages, is Make-Me.com, a cooperative venture involving Laarman, the Waag Society, Droog Design and some early internet pioneers. For designers, it means uploading their design for general distribution. For consumers, it means being able to access and customize design. For local producers, it means using licensing agreements to make the things that people want. “It reduces our carbon footprints and allows for more customization,” says Laarman.

That is what we do. We take something from the past and shape it into something new.

Make-Me.com plans to operate like an app store. You go there to get what you want. Some of it is free and some of it is paid for; some are designed by amateurs and some by professionals. “The amateurs and the professionals have to compete against one another,” Laarman says. “You find the chair you want online via us and you go to the local Fab Lab to have it produced on the spot. The platform is linking consumers to craftspeople and digital fabrication tools.”

Make-Me.com as an open source platform is not limited to design. “It is for journalists, architects, businesspeople, scientists – even a place you could go to for a new haircut,” says Laarman. Big pharmaceutical companies, for example, don’t want to invest in research on diseases that only affect small numbers of people, because there is no money to be made. An open source platform could open up possibilities for DIY bio-labs where scientists and doctors could access research and make their own medicines. “Anyone can use Make-Me.com to distribute information in a new way.”

Designers, however, fear what all this means for them in terms of copyright. They think production companies protect their intellectual property, the quality of their designs, and guarantee them an income. What that fails to recognize is that copyright is a complicated question. Who really owns an original idea? Is anything truly and completely original? Every creative person pilfers and borrows ideas from everywhere; referencing what came before is a natural part of the creative process. “That is what we do,” says Laarman. “We take something from the past and shape it into something new.”  REMIX Via Creative Commons licensing, it might become possible to profit from someone stealing your idea.

What limits the scope of open source at this point goes beyond legal concerns. For it to work, a whole new economic model would need to be devised and accepted. Under the current system, a designer takes his or her design to a manufacturer, who makes it and then takes it to a shop that sells it. “If he is lucky, the designer gets 3% ex factory,” Laarman says. “The brand adds 300% and the shop doubles that again. It’s ridiculous how little of the cut a designer gets. If we used digital tools and changed the way stores work, the ratio would be able to favour creativity and the craftsman.”

However, test-driving a new model will require a platform like Make-Me.com. It has to be large scale, and it will need to attract big-name designers and brands so that people can see it working. It’s a tough chicken-and-egg situation: unless designers feel that their financial income and copyright dues are guaranteed, they are not going to take the risk – and without enough designers taking the risk, it will be virtually impossible to erect the solid infrastructure to ensure smooth, safe and legal operations. It will take a coordinated leap of faith from educational facilities, designers and craftspeople for anything like this to work.
None of these obstacles are insurmountable. What Laarman wants is to be a part of the experiment and to be a contributing member of that generation who will be defining the parameters and creating the way forward. It is that vision which distinguishes him from a lot of his contemporaries – he has the commitment and the patience. He knows that this is something big and wants to do whatever it takes to make it work. “Right now, I am making very expensive, limited-edition designs,” he says. “That is a good way to fund the experiments and start a business, but eventually what I’d like to be able to do is provide open source versions of my work for everyone. That is my goal.”

He knows he doesn’t have all the answers, but Laarman is working through all these problems one by one. “I don’t want to say that this idea could take over the entire production world,” he says, “but it can certainly help craftspeople to make things that are not standardized or mass produced. If a world-wide network of craftspeople grows, then this could potentially really change things.”

Closed Societies Fail

Whichever way you look at this, design cannot continue as is. Design reveals a lot about society, and closed societies fail; like organisms that shut themselves off from their environment, a society that shuns reality will eventually die. Likewise, closed design is outdated. Open source, whether it can be what designers want or even understand at this point, is one way for design to play a real role in building a new, more honest economy. A world with less mass production, less waste, less transportation and less standardized design  STANDARDS can only be interpreted as a win-win situation for all concerned.

Another decade of discussion is needed before open source design will ever be able to make a tangible difference. Interestingly, the same arguments being used against the phenomenon now are the very same arguments that were once used against the introduction of democracy. The ruling elite will always feel threatened by the idea of giving power to the people.

What I’d like to be able to do is provide open source versions of my work for everyone.

]]>
http://opendesignnow.org/index.php/article/joris-laarmans-experiments-with-open-source-design-gabrielle-kennedy/feed/ 0
MADE IN MY BACKYARD / BRE PETTIS http://opendesignnow.org/index.php/article/made-in-my-backyard-bre-pettis/ http://opendesignnow.org/index.php/article/made-in-my-backyard-bre-pettis/#comments Fri, 27 May 2011 08:33:33 +0000 remko http://opendesignnow.org/?p=409 Continue reading ]]> Envisioning the potential of open source tools to facilitate making, Bre Pettis retraces the thorny and convoluted path from wanting to produce self-replicating robots, through a series of prototypes, to being at the core of a little universe of 2,500 MakerBots. He reports just a few examples of what makers and artists have made with the MakerBot and wonders what the future might hold.

Bre Pettis

2007: Pizza around the Clock

In 2007, I was actively recruiting hardware hackers in New York City to be part of NYCResistor, a hackerspace where we could make anything together. I met Zach at an NYCResistor microcontroller study group. After hearing about self-replicating robots, I spent the autumn in a corner of a film studio, where some friends of his were letting him work on RepRap robots  REPRODUCTION when films weren’t being made. We spent a lot of time working on the McWire RepStrap, a 3D printer  PRINTING made out of plumbing pipes. We would meet up, solder some new boards that he had designed from tutorials on the internet, swear at broken traces, and in general just have fun. One of the things to come out of this time was a commitment to LEDs. I remember him turning to me and remarking that he had not put LEDs on a PCB. At that point, we made a solemn vow that no electronics board would ever make it through the design process again without blinking LEDs.

We did not have a working machine yet, but for months on end, we seemed just hours away from getting it to work. We were close enough that I ordered my own plumbing pipes and bent aluminium to take to Vienna, Austria, where I had an artist-in-residence spot with Monochrom, an artist collective in the Museum Quarter. I enlisted the help of the local hackerspace; the entire crew there, including Marius and Philipp Tiefenbacher, and Red, helped out for a week straight. Back in those days, we had to make our own wiring harnesses for everything, and it took forever. The code wasn’t working yet, but it was constantly very close to working. We ate pizza round the clock.

2008: Printing Vodka Shot Glasses

This first Austrian experiment was beautiful.  HELLO WORLD It worked for about a minute before the first-generation electronics burned traces and let the magic smoke out. The extruder was made from a mix of ballpoint-pen hardware and angled aluminium that was ground down with a Dremel, a handheld rotary grinder. We pulled stepper motors from old disk drives and scanners found in the depths of the Metalab archive. We had planned to print out shot glasses at Roboexotica, the cocktail robotics festival  EVENTS  in Vienna that happens every winter, but our machine failed completely; we couldn’t even print out swizzle sticks. Even more shame was heaped on our failure when we were awarded the ‘lime’ award, which is reserved for non-functioning robots. I left the machine in Vienna with Marius and Philipp. By the next year’s Roboexotica festival, they had fixed it up and got it working. Through a combination of brute force and alchemical magic, they spent the cocktail festival of 2008 printing out shot glasses that they promptly filled for visitors with a horrid Scandinavian concoction of vodka and Fisherman’s Friend throat lozenges. Robots and alcohol are a fantastic combination.

Finally, the ordinary person is in the unique position of being able to make almost anything with off-the-shelf modules, parts, community and shared code.

Back in the States, after I had left the McWire machine in Vienna, NYCResistor had found a location and the hardware hacking club was in full swing. Starting with nine people, we created a wonderful clubhouse for hardware hackers. The NYCResistor motto is ‘Learn, Share, and Make Things’. Early on, we chose to collectively share our tools, and we pooled our money to buy a $20,000 laser cutter. The team at NYCResistor is a special group of people who are not afraid to push technology forward and with a tendency towards the absurd; almost anything is possible. Electronics have gotten to the place where creating the electronics of your dreams has become a real possibility. Microcontrollers like the Arduino are accessible. Blogs like Make Magazine and Hackaday, as well as countless personal blogs, are fantastic resources for tinkerers. Finally, the ordinary person is in the unique position of being able to make almost anything with off-the-shelf modules, parts, community and shared code.

On a Saturday in August 2008, Zach and I started Thingiverse to give people a place to share digital designs for things. We had been telling people that downloading designs would be possible someday. Since nobody had created a library of digital designs that allowed people to share their work under open licences, we created it ourselves. Thingiverse is now a thriving community where sharing runs rampant and creativity is found in abundance.

Later that year, Zach got a Darwin up and running, but that design had so many flaws that getting it to work was a challenge. It extruded plastic for a few minutes before this model joined the ranks of machines that release the magic smoke. It was very disappointing. He had spent years trying to get a machine working, and then it worked for only a few minutes before failing completely. We had developed a taste for 3D printing by working on the RepRap project, and we wanted more. That early McWire machine and the RepRap
Darwin  REPRODUCTION showed us that creating an inexpensive 3D printer was possible. We promptly quit our jobs.

That winter, in December of 2008, Zach and I were at the 25th Chaos Communication Congress.  EVENTS Zach gave a talk about RepRap and I spoke about living a prototyping lifestyle. We got home and somehow came to the conclusion that we should start a company to make 3D printers that could be made with the tools we had at hand (the laser cutter) and as many off-the-shelf parts as possible. In January of 2009, we formed MakerBot Industries. Adam Mayer, another friend from NYCResistor, got involved; since he had spent 10 years working on firmware and software for embedded devices, he was immediately charged with making the software functional and friendly.

2009: MakerBot Industries

When we started MakerBot, we set different priorities than RepRap had done. Rather than focusing on self-replication, we wanted to make our first MakerBot the cheapest 3D printer kit that anyone could put together and have it actually work. Those first few months of MakerBot were intense. While prototyping during the first two months, we rarely left NYCResistor. We went through two whole cases of Top Ramen instant noodles and drank countless bottles of Club Mate, a carbonated and caffeinated soft drink from Germany. Powered by caffeine and carbohydrates, we used the tools we had at hand, a laser cutter, and off-the-shelf parts to create the MakerBot Cupcake CNC kit. We went to our friends for funding: Jacob Lodwick, who started Connected Ventures, and Adrian Bowyer, who initiated the RepRap project. They invested some money in us so we could start ordering the electronics, parts, motors and other things we needed to get the first kits together.

We worked hard on those first prototypes. After two months of work, we got the first machine to work at 8:15 on the 13th of March, 2009. As soon as it worked, we threw it in a Pelican case and took off to SXSW, the big music, film and interactive festival in Austin, Texas, where we shared it with the world for the first time. I set up shop in bars and printed endless amounts of shot glasses and twelve-sided dice. The machine printed flawlessly for the entire week. We had been able to pull together 20 kits; we expected to sell 10 of them that first month and have 10 in stock to sell the next month. When all 20 sold out in two weeks, we started staying up late running the laser cutter making the parts.

WE MAKE 3D PRINTERS TO OFFER AN ALTERNATIVE TO CONSUMERISM.

The buyers of those machines were brave. The electronics came unassembled and required SMD soldering, not a trivial task even for seasoned tinkerers with Heathkit assembly experience. Still, they were putting them together and they worked! The MakerBot Google group buzzed with chatter, shared pro tips and stories. Thingiverse, which up until then had been mostly a repository for DXF files for laser cutting, started seeing more and more 3D-printed designs.

Our mission at MakerBot is to democratize manufacturing. We make 3D printers to offer an alternative to consumerism. A year and a half after we began, there are now 2500 folks with MakerBots, and those people are living in a future where they can 3D print the tangible products of their imagination. They get to make a choice between buying something and 3D printing it.  DOWNLOADABLE DESIGN Kids that grow up in a household or classroom with a MakerBot have the option to 3D print the things they want as an alternative to shopping. If a MakerBot Operator needs a doorknob, they can check Thingiverse to see if someone else has made it. (There are 22 things tagged ‘knob’ on Thingiverse. 1 ) If you don’t like the knobs made available by the community of digital designers, you can download the designs and modify them if they are shared under an open licence, or you can design your own. This idea of sharing and being able to customize and modify other people’s designs is a powerful force in the universe. It goes beyond doorknobs to all sorts of practical and beautiful objects.

Designing things for 3D printers is still at an early stage. The programs have traditionally been set up as CAD programs, with a learning curve similar to Photoshop. Only recently have we seen programs like openSCAD that are designed for programmers who are interested in programming dynamic and parametric objects. Software engineers are now able to transform code  AESTHETICS: 3D into real physical objects.

MakerBot operators report that fixing things around the house is a point of pride for them. Thingiverse user Schmarty created his own shower curtain rings when his local store was out of stock. He shared the design on Thingiverse, and now nobody with a MakerBot
REPRODUCTION will ever have to buy shower curtain rings again. On the thing page for the curtain rod rings, Schmarty says:

“It’s a story that can happen to anyone. You move to a new town and leave your shower curtain behind. ‘No problem,’ you think, ‘I’ll just pick up a new liner at the pharmacy down the street.’ So, you trek to the local pharmacy and find the shower curtain liner you were looking for, only to discover that they are out of shower curtain rings, hooks, anything made for holding up a shower curtain! Facing down defeat and the very real possibility that you will have to take a dirty, inefficient bath, you come to a stunning realization: You’re a MakerBot owner. You live for these moments.”

Schmarty made his curtain rings in openSCAD and shared the source files, so you can download them and make curtain rings to your own specifications. One Thingiverse site user has already uploaded a design for a derivative variation with spikes. 2

When we made the MakerBot, we were limited by the size of our laser cutter.  AESTHETICS: 2D That meant that the first model, the MakerBot Cupcake CNC, can only make things that are 100x100x120 mm. That size is big enough to make things that are slightly larger than a coffee mug. Architects in particular complained about this, until Thingiverse user Skimbal created an amazing modular cathedral. 3 There are 10 different cathedral pieces that can be modularly connected to make your own customizable and expandable cathedral! This print pushes the limit of what a MakerBot can do. One of the limitations is in regard to overhangs. A MakerBot can do overhangs of around 45 degrees. It will still print things with overhangs, but they’ll turn out ‘fluffy’ and require cleanup and trimming after printing.  AESTHETICS: 3D

The MakerBot is open source. You can download the schematic and board files, the DXF laser-cutter files, and the software, firmware and parts lists. This allows MakerBot users to truly own their MakerBot inside and out. Charles Pax was one of the first to take advantage of this. He wanted to put the electronics on the inside of his MakerBot, so he modified the DXF laser-cutter files to accommodate an alternative power supply and gave his MakerBot a clean form factor. Unsatisfied with having to reset the machine after each print, he developed the MakerBot Automated Build Platform. Charles now works in the R&D department at MakerBot Industries, pushing the technology of personal fabrication forward.

Because it’s an open platform, you can swap out the tool heads easily. Besides the MakerBot plastruder, which extrudes plastic to create a programmed 3D shape, we’ve launched the MakerBot Unicorn Pen Plotter, which artists can use as a drawing tool. We also created the MakerBot Frostruder so that anyone can use their MakerBot to decorate cupcakes or print with anything that you can fit inside a syringe. This opens up a whole new range of possibilities for artists, chefs and DIY bio-experimenters. MakerBot operators have also used the stepper motors to create beautiful music. Bubblyfish, an 8-bit artist, has composed music for the MakerBot; many others have converted midi files to play their favourite music on the MakerBot.

MakerBot Operators are a great community for each other. When Cathal Garvey (creator of the DremelFuge 4 ) had a mouse problem, he wanted to catch the mouse without killing it, so he put a bounty out for a better mousetrap. He said that he would pay $25 to anyone who could make a MakerBottable mouse trap that actually caught his mouse. The day after he made the call for a MakerBot operators to design a better mousetrap, eight new designs for a mousetrap showed up on Thingiverse!

2010: Thing-O-Matic

Throughout 2009 and 2010, we have constantly updated both the software and the hardware of the MakerBot Cupcake CNC. Now, in autumn 2010, we’ve launched our second machine, called the Thing-O-Matic, which incorporates all the updates. This new machine has a new way of moving the print bed, which moves down along the Z axis as an object grows in height during printing. All the tolerances are tighter, and we have increased the build area to allow users to make bigger things.

At MakerBot Industries, we are excited about the future. This new industrial revolution is still in its early days.

At MakerBot Industries, we are excited about the future. This new industrial revolution  REVOLUTION is still in its early days. Ordinary people are taking up the tools of manufacturing, fabrication and production. I love to check Thingiverse.com to see what new possibilities have emerged during the night. There are so many opportunities for anyone who has the passion and interest to explore the frontier of personal manufacturing. With the tools at hand and the community of sharing that has developed around the MakerBot, the future is bright. Exciting innovations and amazing things are emerging.

2011: 2,500 MakerBots

When we first started MakerBot, we would wonder, “What will people do with it?” We knew that anything could happen; sure enough, we’ve shared the excitement as people shared their work. Now, with 2,500 MakerBots in the wild and more shipping every day, I am curious what the community will do together. What kinds of problems can 2,500 MakerBots solve? What kind of projects can we, as a worldwide community of sharing,  SHARING do together?

  1. http:// www.thingiverse.com/tag:knob
  2. http://www.thingiverse.com/thing:3465
  3. http://www.thingiverse.com/thing:2030
  4. http://www.thingiverse.com/thing:1483
]]>
http://opendesignnow.org/index.php/article/made-in-my-backyard-bre-pettis/feed/ 0
Hello world http://opendesignnow.org/index.php/visual_index/hello_world/ http://opendesignnow.org/index.php/visual_index/hello_world/#comments Thu, 26 May 2011 11:26:15 +0000 remko http://opendesignnow.org/?p=311 Continue reading ]]> The Hello World programme has traditionally been used to test new computer languages, starting with C. The whistles shown here are the Hello World of DIY 3D printing, first designed by Eberhard Rensch. The whistles have taken over Hello World. They are a fine representation of communication expressed as an object. If hello and whistle symbolize communication, what symbol will be produced by the genesis of the DIY bio-printer? Vocal cord tissue?

3D DRAWING OF A WHISTLE BY EBERHARD RENSCH FROM GERMANY ➝ THINGIVERSE / ZACH SMITH


EBERHARD RENSCH ➝ WWW.THINGIVERSE.COM/IMAGE:5199

3D-PRINTED WHISTLES BY ANU FROM THE NETHERLANDS


WHISTLE ANU ➝ WWW.THINGIVERSE.COM/DERIVATIVE:2655

3D-PRINTED WHISTLE BY SEBASTIAN FROM GERMANY


SEBASTIAN ➝ WWW.THINGIVERSE.COM/DERIVATIVE:3243

3D-PRINTED WHISTLES BY DAVE MENNINGER FROM THE USA


DAVE MENNINGER ➝ WWW.THINGIVERSE.COM/DERIVATIVE:1779

3D-PRINTED WHISTLE BY CHRIS PALMER FROM THE UK


CHRIS PALMER ➝ WWW.THINGIVERSE.COM/DERIVATIVE:1302

3D -RINTED WHISTLE BY ERIK DE BRUIJN FROM THE NETHERLANDS


ERIK DE BRUIJN ➝ WWW.THINGIVERSE.COM/DERIVATIVE:700

3D-PRINTED WHISTLE BY BRADLEY RIGDON FROM THE USA


BRADLEY RIGDON ➝ WWW.THINGIVERSE.COM/DERIVATIVE:701

3D-PRINTED WHISTLE BY BEAK90 FROM THE USA


BEAK90 ➝ WWW.THINGIVERSE.COM/DERIVATIVE:2959

3D-PRINTED WHISTLE BY SIERT WIJNIA FROM THE NETHERLANDS


SIERT WIJNIA ­➝ WWW.THINGIVERSE.COM/IMAGE:15962

3D-PRINTED WHISTLE BY JUAN GONZALEZ FROM SPAIN


JUAN GONZALEZ ➝ WWW.THINGIVERSE.COM/DERIVATIVE:4600

GERMAN HACKER’S 3D PRINTS OF DUTCH POLICE HANDCUFF KEY ➝ MADE IN MY BACKYARD / BRE PETTIS


DESIGN BY RAY AKA MR. HANDCUFF, SOURCE: TWEAKERS.NET

]]>
http://opendesignnow.org/index.php/visual_index/hello_world/feed/ 0