Open Design Now » events http://opendesignnow.org Why design cannot remain exclusive Thu, 13 Dec 2012 09:32:59 +0000 en hourly 1 http://wordpress.org/?v=3.3.1 (UN)LIMITED DESIGN CONTEST / MARIA NEICU http://opendesignnow.org/index.php/case/unlimited-design-contest-maria-neicu/ http://opendesignnow.org/index.php/case/unlimited-design-contest-maria-neicu/#comments Fri, 27 May 2011 09:57:16 +0000 remko http://opendesignnow.org/?p=475 Continue reading ]]> (Un)Limited Design contest
Openness in Vitro

Maria Neicu

Openness is no longer only seen in the context of open software; it has become a broadly applicable concept, carried by the digital in the analogue world. Design tools are in user’s hands now, as access to software programs and machines (such as laser cutters or embroidery machines) is opened up in the new context of digital fabrication. Openness has been picking up momentum, but has not yet hit its high point.

Amateurs AMATEURISSIMO seem well-equipped to take on the stage of combining crafts with high-tech: they no longer expect professionals to tell them what is right and wrong. As design is being opened, experts have to re-legitimize their professions in the face of a high demand “for other kinds of taste construction”. 1

But access alone is not sufficient to achieve this goal. Access is only half-way to openness. If it never progresses beyond access, openness is just a popular bit of OPEN EVERYTHING rhetoric, an over-used “fashionable label”. 2 But what does it take to move further? The other part of the journey is collaboration – the only way to give amateurs the opportunity to make a change. This is the only way for openness to bring serious societal relevance to this profession. If both access andcollaboration CO-CREATION wereattained,thenboth amateurs and experts would reach a new mindset – one that thinks beyond design. A first initiative in this sense is the (Un)limited Design Contest. EVENTS Under the auspices of a design competition, the event provides a context for testing Openness in vitro:

Firstly, it provides Access: opportunities, tools and social recognition for the work of non-experts. Everyone that has an idea can bring it to life: participants are encouraged to create prototypes tailored to their subjectivity. Design becomes invitational.

Secondly, it re-connects design with crafts: Crafts are no longer about working only with things, physical objects, but also with entities of intangible value, like symbols, people and networks; these entities are starting to be considered more and more intellectually engaging. KNOWLEDGE As the status of artisanal work done by hand is upgraded by the addition of a symbolic capital, a new awareness is brought to bear on the artefacts around us, and especially on how we can act upon them. Open design causes a shift in our relationship with the stuff we use, bend, break, wear, consume and eventually throw away. It does justice to what these items are really worth. On the one hand, this brings back to us an ancestral sense of curiosity about the artefacts with which we fill our worlds; on the other hand, it demands that we re-think our responsibility in the way we interact with them.

And thirdly, the contest brings people together: experimenting to see whether “shared thinking” can actually happen. The (Un)limited Design Contest SHARING comes as a line of defence: an attempt to prove that openness can move beyond a transitory buzzword, and that collaboration CO-CREATION is possible, transforming design as a profession into a valuable part of future society. As shown by the (Un)limited Design Contest, the value of an object design is expressed in its potential for being taken beyond its original confines. The ‘unfinished’ nature of the script offers the intangible value of an open design. BLUEPRINTS The derivatives are not perceived as ‘corrective’ in this sense. The existence of derivatives does not mean that your original is incomplete or malfunctioning – on the contrary! When others are mixing, mashing and transforming your design script, they are offering their greatest compliment. It is the prize offered by the community: proof that your idea is valuable and considered worthy of further development. By improving your idea, the collaborators are actually approving it.

Adopt and Improve

In open design, adopting and improving is a way of cherishing. The moral is that nothing gets modified unless it is worthy of the time it will take to modify it or add innovations. Humans are limited in their creational power, so togetherness becomes a pre-requisite for socio-technological innovation: different life stories, mindsets and knowledge experiences are added by other participants, enriching each open design project. These initial efforts are only the beginning; this experiment has to be repeated. The first steps towards fruitful collaboration have already made. Design is fully engaged in the re-shaping process, and openness seems to be breeding a new design culture – a culture that is still under construction.

UNLIMITEDDESIGNCONTEST.ORG

  1. Roel Klaassen, Premsela
  2. Victor Leurs, Featuring-Amsterdam
]]>
http://opendesignnow.org/index.php/case/unlimited-design-contest-maria-neicu/feed/ 637
(UN)LIMITED DESIGN CONTEST / BAS VAN ABEL http://opendesignnow.org/index.php/case/unlimited-design-contest-bas-van-abel/ http://opendesignnow.org/index.php/case/unlimited-design-contest-bas-van-abel/#comments Fri, 27 May 2011 09:55:57 +0000 remko http://opendesignnow.org/?p=473 Continue reading ]]> (Un)Limited Design contest
Experimenting with Open Design

Bas van Abel

Open design covers an extensive area and its contours are not yet clearly defined, making it difficult for designers to come to grips with the developments. One of the most tangible open design experiments was the (Un)limited Design Contest, which challenged the designers to try something out and experience for themselves what happens next. Alexander Rulkens (Studio Ludens), 1 Sylvie van de Loo (SEMdesign) 2 and Goof van Beek 3 share their experiences.

All designs that were submitted were made with digital manufacturing technology, using machines that turn digital designs into physical products. Digital manufacturing offers the designer many new possibilities. Professional designer Sylvie van de Loo used a computer-controlled laser cutter to create her Fruit bowl 128DOWNLOADABLE DESIGN The bowl is constructed from 128 pieces cut out of cardboard. Her initial idea was to work out a prototype of the bowl in clay. As she was drawing the bowl in 3D on the computer with a friend, she began checking the possibilities for manufacturing the product digitally. For this, she went to the Fab Lab in Utrecht.

Sylvie: “I’ve been in the Fab Lab before, but I didn’t see the potential for my own work at that time. I thought it was all a bit too technical; I felt that a creative approach was lacking. Now I’m discovering that the technique is an important source of inspiration to me.” Sylvie took the advice to turn her bowl into a technical drawing program, which was capable of breaking the 3D form up into sectional planes with a specific width. This approach allows her to generate forms for different materials, which are then cut out with the laser cutter.
AESTHETICS: 2D It is a fairly technical process, which has had an important influence on the creative process and was one of the deciding factors in the final form and appearance of the end product.

Sylvie: “Working with the laser cutter was really a revelation for me. What a cool machine! Anything is possible. You can form 3D layers out of 2D layers. It’s very precise, and you can engrave the most beautiful forms with it. Because you yourself get to work with the prototyping technology, the process of making it is a valuable addition to the final design. If I hadn’t had the chance to experiment with the machine, the definitive form and choice of material would never have occurred to me.”  HELLO WORLD

But still, designer Alexander Rulkens van Studio Ludens feels there is a great deal of room for improvement in how people gain access to the designing process and machines.  ARCHITECTURE Alexander: “I think the Fab Lab concept can benefit from better interfaces to wield the great power that the technology can give.” He didn’t submit a product for the contest; instead, he submitted a software tool that enables everyone to create their own design easily.

Sharing for Yourself

It’s clear that access to technology offers new possi-bilities, but what possibilities does sharing creative work offer the designer? Goof van Beek won the design contest in 2009; his design received extensive publicity. Goof: “It’s fun when people come up and talk to you because they saw your design somewhere. I’m not sure if it really was the open nature of the design that gave the dress the amount of attention that it got, but it was a good first introduction to the reality outside the environs of my study. Meanwhile, I have been approached to take part in an exposition.”

It could be that the conditions of the contest played a role in this: under the (Un)limited Designs terms, the design could be published and shared without prior approval from the  DESIGNER designer. On the one hand, this made it possible for the designers to establish a name for themselves more quickly, and a company that finds the product interesting knows who to go and talk to. However, it also means that designers have given their permission for others to adapt the design and publish their derivative design. “It is a bit scary, but it also has its advantages,” says Sylvie. “The bowl is finished as far as I’m concerned, and I think it’s really great that someone else could pick it up and give it their own twist.”

She isn’t afraid this openness will stand in her way as a designer or harm her business interests. Sharing the design also associates her with the product as the original designer – and even if a design hasn’t been explicitly shared, the designer still always runs the risk of ideas being stolen.

Alexander emphasizes that it’s not just a business matter. Alexander: “The major benefit of sharing is the opportunity to get feedback on your thought and design process early on. You are opening yourself up to the knowledge of others, to different perspectives, which you need as a designer to come up with ideas that are relevant to society. The fact that your design is open to improvement ultimately means that it will be better suited to the people who are going to use it in their day-to-day lives.”

Signature

But looking at the entries in the design contest, only three products were submitted in the ‘fusion’ category. It’s a category that provides incentives for the re-use and re-interpretation of designs that had already been submitted.  REMIX Sylvie and Goof both expect that this has to do with the importance of the designer’s signature style, especially in a contest. Sylvie: “There is a difference between what you use from other designs as an inspiration for your own design, and basing your design entirely on somebody else’s. Originality is important to a designer, and designers aren’t used to explicitly recognizing others for contributing to their design. This makes us choose the safe way by inventing something new.’ Goof: “It’s strange that we don’t consider improving somebody else’s product a challenge, because I would really like to take a few designs in hand in my surroundings. I do know several designs that I think could be done better.” Sylvie thinks that education has an important role in forming this attitude. Sylvie: “At the academy, we were encouraged to be original by creating work that is unique and distinguished.  DESIGNERS I never saw any–one literally taking an existing design as a starting point for a personal interpretation or addition. Maybe we still consider ourselves too good to do that.”

Alexander has a somewhat more radical view. He believes that open design will essentially change the role of the designer. Alexander: “Designers will have to start listening better in a world where the designer doesn’t make the design decisions, but rather facilitates the process of designing decisions.” The meaning of a signature style is changing, as is the way in which we handle that signature style. Alexander: “We have to move towards a system where a person’s contribution to a design can be measured and that person can be given proper credit for their efforts. This means that the designer has to let go of the feeling that “it was my idea”.

It is not yet possible to draw hard and fast conclusions from the results of the (Un)limited Design Contest, EVENTS but it is clear that the designers will engage in the challenge. The most valuable aspect of this kind of experiment is that it enables us to explore certain aspects of open design. In the first edition of the contest, the question was still whether designers were willing to throw open their own design. The emphasis in the second edition was on compound products; the challenge for the third edition will probably be achieving a design dialogue between the contestants.

unlimiteddesigncontest.org

]]>
http://opendesignnow.org/index.php/case/unlimited-design-contest-bas-van-abel/feed/ 0
MEDIALAB PRADO / LAURA FERNÁNDEZ http://opendesignnow.org/index.php/case/medialab-prado-laura-fernandez/ http://opendesignnow.org/index.php/case/medialab-prado-laura-fernandez/#comments Fri, 27 May 2011 09:51:29 +0000 remko http://opendesignnow.org/?p=455 Continue reading ]]> Medialab Prado
a Methodology for Collaborative Prototyping

Laura Fernández

Medialab Prado, part of Madrid’s municipal arts department, is aimed at the production, research and dissemination of digital culture and the area where art, science, technology and society intersect. 1 Medialab Prado has several on-going programmes, all of which are free and open to the general public; two of their initiatives are discussed here.

The Interactivos? programme, launched in 2006, is an open research and production platform for creative and educational uses of technology, facilitating collective creation using open hardware and open software tools. Its goal is to experiment with the use of electronics and software in art, design and education projects. The Visualizar programme, which started in 2007, explores the social, cultural and artistic implications of data culture and proposes methodologies to make them more understandable, opening up opportunities for participation and criticism.

Medialab Prado organizes international events  EVENTS in the context of its programmes, using a hybrid form that combines production workshops, symposiums and final exhibitions to showcase the results. These initiatives take place in Medialab Prado’s new facilities, which provide a versatile space for reflection, research and intensive collaboration.

In that space, several projects previously selected from the responses to an international open call for proposals are developed in interdisciplinary working groups, consisting of the author of the initial proposal and all the people who are interested in collaborating. Over a three-week period, the members of each working group work in consultation with expert advisors to develop prototypes; at the end of that period, the results are presented and displayed in an exhibition.

The process is open to the public from beginning to end. Participants are encouraged to prepare proper documentation for their projects, both during and after the workshop, and to publish the results and source code under licences that grant access to and distribution of the knowledge produced by the working groups. Medialab-Prado offers a range of tools to facilitate knowledge  KNOWLEDGE exchange on the projects, including forums, wikis, blogs and a code repository.

The methodology developed by Medialab Prado has been used to carry out fifteen workshops so far, in which 140 prototypes were developed by more than 900 participants.

Low-cost, DIY Methods of Digital Fabrication

During the Interactivos?’09 Garage Science workshop, a RepRap 2 machine (a self-replicating 3D printer for rapid prototyping)  REPRODUCTION was built at Medialab-Prado by a team of nine people. Inspired by RepRap, Zach Hoeken Smith from NYC Resistor started the MakerBot project, 3 an iterative design process that resulted in a low-cost 3D printer which can easily be built from a kit. In January 2009, Medialab-Prado organized a workshop to build and start using a MakerBot, with the aim of gathering a local community that can continue working on those two projects.

Text Digitization Workshop

In May 2010, a digitization workshop was held with the aim of covering the full scope of activity related to text digitization using free and open technologies. Inspired by DIY Book Scanning, 4 this workshop was about digital mark-up, editing and publishing, as well as the promotion of digital content.

medialab-prado.es

  1.  http://medialab-prado.es/article/que_es
  2. http://reprap.org
  3. http://makerbot.com
  4. http://www.diybookscanner.org
]]>
http://opendesignnow.org/index.php/case/medialab-prado-laura-fernandez/feed/ 0
DESIGNSMASH / ENLAI HOOI http://opendesignnow.org/index.php/case/designsmash-enlai-hooi/ http://opendesignnow.org/index.php/case/designsmash-enlai-hooi/#comments Fri, 27 May 2011 09:41:39 +0000 remko http://opendesignnow.org/?p=436 Continue reading ]]> AN OPEN DESIGN BUSINESS MODEL.

Enlai Hooi

It is still somehow an unusual thought that open design might be considered a viable, possibly even beneficial, strategy for business. The product design industry has been slow to move on the issue of open intellectual property, despite the fact that intellectual property is one of the safest fields for an open structure. While many people have the facility to copy software and download music, it is somewhat less common for people to have access to rapid manufacturing services, workshops, specific components and materials.

In truth, there should be no reason for preventing people with the resources to produce such objects from doing so. They tend to be the people most invested in how the processes of production relate to the quality of the object. They offer excellent and necessary critical feedback. DesignSmash is a company that produces and sells products based on Creative Commons  CREATIVE COMMONS licences that allow the legal reproduction of designs. The feedback and design changes offered by the community of people invested in our open design project are an essential part of our business plan. Regular events  EVENTS take place where designers come together in a collaborative design session, a charette, and ‘smash out’ products in the middle of a party. The products are laser-cut on the spot and presented to the audience at the end of the night.

While the design objects are not always fully refined after the four-hour design charette, the value of the object becomes clear. Importantly, the release of the design file over the internet allows other designers to comment on and modify the work of the original designer. The development process is user-driven. The potential revenue lost by DIY  DIY is negligible compared to the benefits of the feedback and promotion received from allowing others to get involved in the design work. For a start-up company with limited resources, this interaction is essential.

The events offer the designer exposure and the chance to learn, produce, collaborate and dance within the space of an evening. Some of these designs are picked up as products. If they are produced by DesignSmash, 12.5% of the product’s profits go to the designer. This is significantly more than the industry standard; clearly, the designer will benefit from this arrangement. A further 12.5% of profits are reserved for future open design initiatives and open design education.

Customers decide whether or not to purchase a product based on an assessment of its value. When the cost of a product is below a certain threshold, i.e. low enough to be purchased without interfering with the buyer’s lifestyle, the values of the brand have significantly more influence on whether or not the customer buys the product. Open design, local manufacture, the designer’s story: all these aspects accumulate as mutually beneficial factors in the value equation that accompanies the product. DesignSmash has a clear position on this matter: why not? Why not give the designer a greater portion of the profits? Why not allow people to learn from the objects being produced? Why not re-invest in the design community? Why not? It will certainly be good for business.

design-smash.com

]]>
http://opendesignnow.org/index.php/case/designsmash-enlai-hooi/feed/ 0
DO IT WITH DROOG / ROEL KLAASSEN, PETER TROXLER http://opendesignnow.org/index.php/article/do-it-with-droog-roel-klaassen-peter-troxler/ http://opendesignnow.org/index.php/article/do-it-with-droog-roel-klaassen-peter-troxler/#comments Fri, 27 May 2011 08:40:09 +0000 remko http://opendesignnow.org/?p=419 Continue reading ]]> Renny Ramakers talks about Droog’s latest project Downloadable Design, about making money, designing for the masses, the development of the design profession, and Droog Design’s recent experiments and research in sustainability, local production, co-creation, upcycling and collective revitalization of the suburbs.

Roel Kaassen Peter Troxler

Roel Klaassen: Looking at recent and future developments in design in the Netherlands, Droog has played an important part, perhaps even a key role. One of your latest projects is about design that can be downloaded. Are you giving your designs to users so they can modify them?

Renny Ramakers: We started the Downloadable Design DOWNLOADABLE DESIGN project together with Waag Society because we saw that designers these days make products that could be downloaded very easily, but aren’t available for download. Take Jurgen Bey’s design for our store in New York, for example. Even though it’s based completely on laser cutting, it is constructed from so many parts and its assembly involves so much manual labour that it is not possible at this stage to offer it as a downloadable design.

We’ve seen the idea of flat-pack products that you assemble yourself, and are seeing the growth of the 3D printer,  PRINTING which can now be used to create physical objects from various designs. These concepts looked interesting, so we thought: let’s see if we can build a platform for these kinds of designs. Together with early internet pioneer Michiel Frackers and designer Joris Laarman, we are now working on the realization of this platform, which will be released as Make-Me.com.

We set up the project with the aim of achieving a number of goals. First, we wanted to eliminate some of the many steps between design and production, so the products become cheaper, similar in a sense to what IKEA has done. Compressing the process is an important reason. We know from our experience with producing designs that it may take up to two years before a finished product reaches the shops. Two years is a tremendously long time, so it’s interesting to explore whether designers would be able to design products without this second part of the process. It could be a very interesting development. Second, if you produce locally, you cut down on the need for transport. Reducing transport adds an ecological benefit. Third, local production on demand means that you don’t need to have your products in stock. This constitutes an economic advantage. From the consumer’s perspective, providing everybody access to design products also has value. Design is everywhere: even the most inane magazines feature design. However, a high level of design isn’t available to most end users; our products are just too expensive for the people who read those magazines. As a result, people end up going to stores like IKEA. We think that Downloadable Design will make it possible for us to bring our products within reach for people who would not otherwise be able to afford them. All these end users would have to do is assemble the product themselves.

Take Jurgen Bey’s design for our store. Even though it’s based on laser cutting, it is constructed from so many parts and its assembly involves so much manual labour that it is not possible at this stage to offer it as a downloadable design.

This leads me to another aspect: do it yourself, or DIY.  DIY There are countless DIY shows on TV; DIY is everywhere. So we thought: what if we not only made design products cheaper, but also introduced more variety. How many times have you found almost the perfect table, but it’s only 80 cm wide and you need a table that’s 90 cm or 120 cm wide to fit in your living room? In so many cases, your house is too small or too big for the standard sizes. What if you could adapt all these measurements to suit your space? That would be hugely practical, much more functional. Or you could choose your own colour, to make it your own thing. Downloadable design is also a form of co-creation.  CO-CREATION

Challenging the creativity of designers is yet another reason, and a very important one. Designers have to adapt their design process to the platform. They have to figure out which parameters of the product can vary, while still earning a profit. What we did here was not just to ask the designers to design a product and have the consumer choose a colour or a pattern; that’s already been done. We asked them to be creative and think of completely different ways for consumers to interact with the design. We also challenged designers to consider how they would make money on their design. We asked them to be creative in what they would offer for free and what they could be offering for an added fee. What if there could be layers in a design? For example, a product could be more expensive if it bears the designer’s signature. The business model requires creativity, too, and it is the most challenging part. As I said, we were inspired by laser cutting and digital technology, but our focus is not limited to digital technology; we also want to revitalize craftsmanship.

We plan to set up a whole network of small studios for highly skilled crafts; as I’ve discovered, it is not easy for small-scale workshops to survive. This network of craftspeople is as important to us as the 3D printers and laser cutters. The emphasis on craftsmanship is crucial, particularly since Ponoko and Shapeways are already offering 3D printing and laser-cut products. AESTHETICS: 2D I think that including crafts gives us a distinctive edge. It also facilitates cross-pollination by introducing digital technology into crafts workshops and vice versa. Finally, using local materials is also important to us; local sourcing is a high priority.

Let me zoom in on making money. Designers have to come up with new business models. Do you have ideas or examples from your experience with the Downloadable Design platform?

At this stage, the designers are not there yet; they are just getting started. One designer came up with an interesting suggestion: as you download a product, say a chair, you receive more and more pixels. If people could stop a download half-way, they could get the design for free, but it would be incomplete or low-resolution. If they decide to download the whole product, they would have to pay for the privilege.
Another idea was to offer an interior design service, so customers could have their interiors custom-made to suit their individual needs, based on variable designs that would be available on the platform. They would pay for the customization rather than for the products. Rather than buying a ready-made cupboard, they would pay to have the basic design adapted to their individual requirements.  MASS CUSTOMIZATION

In so many cases, your house is too small or too big for the standard sizes. What if you could adapt all these measurements to suit your space?

I asked the designers to think of different stages, different levels or different services; to think of a way to create a need for their services. While this is the most obvious idea, it’s not easy for a designer to conceive a product that generates demand for a service. It’s easy to do that with something like a phone, which comes with software, but it becomes a real challenge when you’re working with purely physical products. But there is another difficulty: customers have to get used to customization. Take the example of Blueprint, a physical blueprint of a home — or rather parts of a home — in blue Styrofoam which Jurgen Bey designed the Droog shop in New York. The idea was that people would buy the products but could specify the materials to their own liking. There’s a display model of a complete fireplace in blue foam, with a chimney and everything. If somebody wants to have this fireplace in their home, they could have it that shape done in tiles or bricks. But people don’t dare to buy it like that; they first want to see it for real, as a tangible object. They want to know what material it is made of, what it looks like, how it feels. We’ve learned that a project like that could only work if you produced an actual, physical specimen and offered that for sale.

Similarly, people don’t want to make all their clothes by hand themselves; they want to try the garments on in the shop to see how they’ll look. We’ve also discussed whether we would want to offer a separate category of designs: to expand what we offer, not only for download but also for sale. But what would be the point of a platform for downloadable design if you also have a web shop? Not having a standard web shop is one of the important reasons why I’m working on this project, so we’re not going to have one. However, the fact that this topic keeps cropping up is certainly a sign of things to come.

What do you feel it signifies? Is it just laziness on the part of the consumer?

No, it’s a lack of confidence. Changing the colour of your sneakers at Nike ID is less of an issue.

I’ve done it once; it was quite fun.

But now try doing that for a whole cupboard or bookcase, a design that would become a physical object. Imagine that you could change all the parameters. Not just an option for customization, but a required part of the process. You would have to specify each and every aspect. So the question is, wouldn’t people rather go to a shop and simply buy a cupboard?

It may have to do with lack of confidence. Also, not everyone is an expert in interior design. That’s also why standard furniture exists. Not everyone starts out with an empty floor plan. All those consultants and home decoration centres are there to help people define their interior design preferences. This is a separate issue from the presumed lack of confidence; you could call it ‘assisted design literacy’: how to design your own world.

We would be willing to help people. All these design magazines offer plenty of advice on home decoration, and there does seem to be a demand for it. But then we need to consider the extent to which design can be open. I remember modular furniture in the 60s. People wanted to see examples, too, back in those days; they wanted to see a visual impression of the best way to combine those modules. These are investments that people make. Downloading something that’s purely digital doesn’t cost much.

And if you don’t like it, it’s not a big deal.

But with downloadable design,  DOWNLOADABLE DESIGN people really need to take the next step. It means that they would have to go to a workshop to have the product made, or they would need to make it themselves. You say that it sounds like fun, but I doubt it would be fun for the majority of people out there; they wouldn’t want to take the time. That even holds true for me; I wouldn’t want to do it either. I’ve got other things to do.

This trend, this movement, this development: how does it change the design profession?

Designers have always wanted to work for the general public. in the 1920s and ‘30s, it was products for the masses that they wanted to design. Designers gave directions for how to make things that were good for the masses, and the belief was that the masses needed to be educated. Then, in the 1960s, there was an emancipation of the masses. The re-industrialization led to incredible market segmentation, so the masses had more choices and could buy more. As a result, designers started to follow the preferences of the masses. When the market is saturated, it becomes segmented; it’s a logical progression.

If you download music, You can start listening to it immediately. Design is different; you still need to go somewhere to have it made, or you have to make it yourself.

After that, a counter-movement emerged, as evidenced by Memphis and Alchimia, who got their inspiration from the choices of the masses and used it to design highly exclusive products. The inspiration from the masses has always been there, always. However, design is always a top-down process.

In the 1990s, some designers started to turn away from an overly designed environment; they reached a saturation point. They were interested in the fluidity of form. These designers would initiate a process, then stop the transformation at an interesting point and produce the result. It was presented as a free-form exercise, but it was very much directed by the designers.

New opportunities are emerging from the Internet and from digital fabrication, which means that the masses can start to participate in design.

That seems like a logical next step, at least from your perspective. But when I look at the products showcased on sites like Ponoko and Shapeways, I am concerned that the result will be a huge volume of unattractive and clunky design. This trend will not end well.  AESTHETICS: 2D

You say this as an expert in design?

I say it as a human being. I am worried that this trend will spread like a virus. In my opinion, the internet has brought us a lot of ugly stuff. There have been a lot of beautiful things, too, but a lot of ugly ones. Leaving people to their own devices… I don’t oppose it on principle, but it’s not my thing.

The design world draws inspiration from these developments, but these trends are not all that’s going on. Looking at what’s going on in the design world, the designers we work with and the projects we work on, I see two things happening. On the one hand, there is the open source story, which is about trying to find possibilities for participation; that goal is in line with the principles we espouse.

The other side is a devotion to local sourcing, a type of anti-globalism.  MANIFESTOS Many designers are concerned about the transparency of production processes and would like to see more use of local materials and local sources. That is part of our platform, too, since we want to encourage working with local sources and local workshops. Another important issue at the moment is sustainability, the concept of relying on renewable resources.

Designers are becoming entrepreneurs. By telling them to create their own way to make money, we relate to their sense of entrepreneurship. However, the concept of finding their own innovative ways to earn a profit has not yet been developed. This is a real challenge; they really have to make that mental shift towards entrepreneurial design.

On the one hand, there are designers like Tord Boontje,  DESIGNERS who distributed the design of his chair as a file as early as the 1990s. These digital designs were the start of a growing trend, but the content was static. There wasn’t much you could do with it, other than possibly choosing a different upholstery fabric; the idea was simply to distribute it as-is. It was essentially a predecessor of open design. As a designer today, I can imagine that I would have to get used to deciding what to give away for free and what to keep. I would define the parameters, but to what extent would I really have to relinquish control of my design? It is an interesting dynamic, and designers do need to maintain a creative focus on it.

Another issue that I’ve noticed is that designers do not really believe that consumers would download their designs. If you download music, then you have it and you can start listening to it immediately. Design is different; you still need to go somewhere to have it made, or you have to make it yourself. That’s more onerous.

People are too scared to add their own contribution to a lamp they bought for about 100 euros.

The Downloadable Design platform is a learning process for us, too. We started it as an exploration of a concept, and we want to investigate it thoroughly. It is important for us that the platform is curated, that we have a certain amount of control over what is put on the platform. We are playing around with ideas for allowing people to upload things, but I’m still undecided about whether or not I want to do it. In any case, I would want uploads to be related to the designs being posted by our designers. Maybe people could upload how they made the products they downloaded, so it would remain within the parameters defined by the designer.

Open design as a new way of designing. What does that mean to you?

At Droog, we’ve been doing open design all along, right from the start. Our work has always been connected to projects or events.  EVENTS We’ve always been interested in the interaction with consumers. Consistently, one of the key elements in our work has been that consumers could personalize a design, that our designs had an element of fun, pleasure or interactive co-creation.  CO-CREATION

A very good example is do create, a concept that we realized in collaboration with the KesselsKramer PR agency in 2000. 1 One of the projects was do scratch by Martí Guixé, a lamp that’s covered in black paint. People were supposed to scrape patterns in the paint to create their own drawing. This lamp has been sitting around in the shop for seven, eight years, and nobody has ever bought one. People are too scared to add their own contribution to a lamp they bought for about 100 euros. Even when we added sample drawings that people could copy onto the lamp themselves, nobody would buy it. We only started selling the lamp when we had artists do the drawings. After that experience, we decided not to continue this product. This type of interactive design did not seem to work.

Then, in 2008, we did Urban Play in Amsterdam, which also involved a contribution by Martí Guixé. 2 It was a large cube built from blocks of autoclaved aerated concrete or AAC, a low-density, non-toxic material that can be carved very easily. The idea of this Sculpture Me Point was that everybody could add their own sculpture. Everybody chopped away from day one, but after six weeks the result was deplorable. So we ended up with two questions. A, are people willing to do something? And B, what happens when people actually do it; is the result interesting?

Did you do further research on co-creation involving interaction with users? What did it reveal?

One of the projects that started from the Droog Lab is a digital platform for co-creation invented by Jurgen Bey and Saskia van Drimmelen. That comes fairly close. It is about co-creation,  CO-CREATION but it provides a platform for designers to work with other designers. Jurgen and Saskia moderate participation; only people they find interesting can get involved. It is extremely curated; they decide who gets in, who stays out, and who will be making something together, but they also allow room for people’s individual development. We are also working on a different platform which is about ‘upcycling’ dead stock from producers. The aim here is to make dead stock accessible for designers. It’s got nothing to do with using digital technology; it is about all the material that would otherwise simply be thrown away. In point of fact, most of these discarded products get recycled.  RECYCLING But the point here is that all those designs vanish into thin air. Thousands of shavers just disappear. A designer designed them; a certain amount of development went into them. Costs were incurred, and a lot of energy was spent. That’s another development we’re pursuing: we try to direct design towards re-designing what already exists.

China, for instance, might be coming to the end of its tenure as a cheap manufacturer pretty soon. That’s one of the reasons why we started Downloadable Design: to invent new systems.

Again, this is about the creativity of designers. In some sense, it could be considered co-creation, since a designer is building on something created by another designer. The challenge here is whether it is allowed. Somebody designed it, but now it’s dead stock that the company would rather throw away than have us picking it up and putting designers to work on it. There are very loose links to co-creation, to bottom-up design. More importantly, however, these are all developments that are part of what is happening now. So much more is going on now; the bottom-up part is only a small proportion of it.

You talked earlier about services, mentioning the example of interior design. The interesting thing is that you link the designer to the consumer directly, rather than through a middleman or organization.

That truly is a development that is happening right now. Take the fashion collective Painted, for example; they would love to make products for the user. The designers would prefer to make clothes for real people, not averaged-out stuff in shops; they would much rather make things one-on-one, in direct contact with the user. And I think that this really what’s going on in design at this very moment.

Distribution and the middle links in the production process are issues that IKEA has started addressing. We have first-hand experience with how much energy, money and time it costs. Everyone is trying to invent something to mitigate this problem, be it Downloadable Design or a designer who works directly for the customer. That’s where everybody is looking for solutions at the moment. It has to do with the current system; the whole production chain is starting to fall apart. There are environmental questions, economic questions, questions about production in developing countries. Not long ago, everybody was starting to have their stuff made in developing countries, but people in those countries are starting to earn more. China, for instance, might be coming to the end of its tenure as a cheap manufacturer pretty soon. That’s one of the reasons why we started Downloadable Design: to invent new systems.

Our other answer is a resolution of the dead stock issue. If we develop a system in which products are not thrown away, but instead are ‘upcycled’ and brought back into circulation, then we would not need to use so much new raw material; we could use what we already have. There are a few things that need to happen before people start adopting the concept, but we are interested in exploring systems to see how we could create new incentives for creativity, but also how we could start to fix the ecological and economic problems.
In the Droog Lab we are addressing yet another issue: the problem of globalization.  TREND: GLOBALIZATION You see the same stuff everywhere; you get the same retail chains everywhere; you get shopping malls everywhere. High-rise buildings are springing up all over the place; food travels all over the planet with no consideration of what’s in season. These examples are part of an incredible and very special aspect of globalization that makes people forget where things come from. People start to take everything for granted and lose touch with what is part of their own culture. That’s why we set up this lab, as a system to develop creativity based on local conditions, based on how people live and work. We want to develop creative ideas that come from talking to normal people – a taxi driver, a hair dresser – not graduates from an arts academy.  GRASSROOTS INVENTION This approach allows us to get to the heart of the matter, achieving a comprehensive understanding of how creative ideas are viewed by the end users. The aim is for designers come back with so much inspiration that they are able to develop new ideas in a global context.

We want to develop creative ideas that come from talking to normal people – a taxi driver, a hairdresser – not graduates from an arts academy.

Led by Jurgen and Saskia, the Droog al Arab team came back from the Droog Lab project in Dubai with the idea for a platform for co-creation.  CO-CREATION After seeing all these shopping malls, they have seen how the current system of mass production is a one-way street that leaves consumers in the dark about how things are produced. On their platform, they want to show how things are designed, especially how they are designed collaboratively, and they want to establish contact with customers and producers on that single platform.  MASS CUSTOMIZATION

In another project being done in the suburbs of New York, the team led by Diller, Scofiodio + Renfro wants to bring new life to these emptying satellite towns by turning residents into entrepreneurs. An amateur chef might start a sideline as a restaurant owner, or a person might open an informal library because they have a lot of books. Our designers are not at all interested in downloadables and the like, but they are investigating what happens at that level and developing ways to react to it creatively. At that point, they step back let the residents do their own thing. It’s such a fun project. Imagine going to visit a suburb, and discovering that one house has become a restaurant, another one a library, and another one a café. Imagine that somebody opened a cinema simply because they had a projector. All the fun things are available again, and people don’t have to leave the neighbourhood to find them. It creates a renewed sense of community.

Imagine that somebody opened a cinema simply because they had a projector.

On the one hand, I am fascinated to see what those people are actually going to do. On the other hand, I am interested in how we are blurring the boundaries between public and private; essentially, we are asking people to fulfil a public role in their private home. Accepting that involvement could even have an influence on the architecture of these people’s homes. What will houses look like if suburbs develop in that direction? If everybody, or at least a significant part of the population, becomes entrepreneurs, then their homes will look differently. Their private residence will include a public section.

That’s exactly why I do these things. I always return to the challenge of inventing a system, a method of generating innovation, regardless of how it happens. Downloadable Design, innovating the designer, upcycling dead stock, working within the local context, whatever. For me, these are all parts of the same story, facets of one whole entity. Maybe, two months from now, I will have dreamed up something else, have had yet another idea.

Those are a few of the projects we are running at the moment. All these initiatives are born from the same motivation: a sense of curiosity about the user, and a drive to bring innovation to design in a different way, by developing fresh methods while never forgetting that design is also fun.

]]>
http://opendesignnow.org/index.php/article/do-it-with-droog-roel-klaassen-peter-troxler/feed/ 147
THE BEGINNING OF A BEGINNING OF THE BEGINNING OF A TREND / PETER TROXLER http://opendesignnow.org/index.php/article/the-beginning-of-a-beginning-of-the-beginning-of-a-trend-peter-troxler/ http://opendesignnow.org/index.php/article/the-beginning-of-a-beginning-of-the-beginning-of-a-trend-peter-troxler/#comments Fri, 27 May 2011 08:38:59 +0000 remko http://opendesignnow.org/?p=415 Continue reading ]]> This portrait of open designer Ronen Kadushin reveals his vision of ‘opening’ industrial design and putting the designer firmly back in the centre of the design process. It tells of successful examples of Ronen’s design practice – the Hack Chair, the Italic Shelf – showing how Ronen works as a designer and revealing how he envisages earning a living from Open Design.

Peter Troxler

“I’m smelling the beginning of a beginning of a beginning of a trend,” Ronen said to me when I visited him at his Berlin Mitte flat in September 2009. He moved to the city “with his wife and dog to work on Open Design”, to explore how today’s products could regain their contemporary relevance in relation to “the grand vision of human society”, as expressed in the internet. “You don’t get to have many adventures as a professional designer”, DESIGNERS he said in his lecture at Premsela’s Unlimited Design Forum, 11 May 2010. “I’d say this is a good adventure. A revolution REVOLUTION in product development, production and distribution is imminent due to the disruptive nature of the internet and the easy access to CNC machines. Open Design is a proposal to make it happen. Its aim is to shift industrial design, making it relevant again in a globally networked information society.”  TREND: NETWORK SOCIETY

MY AIM IS TO MAKE INDUSTRIAL DESIGN RELEVANT AGAIN IN A GLOBALLY NETWORKED INFORMATION SOCIETY.

I first heard about Ronen Kadushin at an event showcasing projects using CC licences, 1 which was held in a former military barracks in Zurich in January 2009. It was not until August 2009 that I first met Ronen in person; we were launching the first (Un)limited Design Contest in Vierhouten, the Netherlands, at Hacking at Random, the 2009 international technology & security conference.  EVENTS This big family get-together of European hackers was attended by over 2000 people. The contest was intended to promote open design; as its number-one proponent, Ronen seemed just the right person to kick it off. Unknowingly, we were inviting Ronen into a community he had only recently discovered for himself; his memories of the event still bear the glow of his first explorations in open design.

Ronen gave a fascinating talk on Open Design on that occasion; it was only his first stop on a series of subsequent talks that took him to Vienna, Tallinn and London. In the time that I have known him, Ronen has developed his view of “Open Design” (the capitals are his) quite a bit, from the early 2009 Introduction to Open Design 2 to the Open Design Manifesto 3 of September 2010.  MANIFESTOS

Ronen’s interest in open design stems from his Master’s thesis, which he completed at Middlesex University in 2004. Before that, Ronen had studied industrial design at the Bezalel Academy of Art and Design in Jerusalem and graduated cum laude with a Bachelor of Design in 1991. He went on to work in furniture design in Tel Aviv at Studio Shaham and for Znobar, and in London at Ron Arad’s One-Off studio. In 2005, he moved to Berlin to found his open design venture and to become a lecturer at the Universität der Künste (UdK). In 2010, he taught open design at Burg Giebichenstein University of Art and Design, Halle, as a visiting professor.

I looked at other design fields, such as graphic design and game design, and they were having a field day on the internet! Creativity was booming. But industrial design wasn’t even a blip on the radar.

Ronen has been preoccupied with bringing the ideas of open source software to the world of industrial design: sharing the source code for designs over the internet, allowing anybody to download, copy and modify it and to use it to produce their own products. “I looked at other design fields, such as graphic design and game design, and they were having a field day on the internet! Creativity was booming. But industrial design wasn’t even a blip on the radar.” Sharing CAD files on the internet under a permissive license is the first condition of Open Design. The second condition is that Open Design products must be able to be produced on CNC machines, directly from the CAD file, without requiring specialist tooling such as moulds or matrices.

We’re talking about a new movement in its infancy here: People are Taking their first steps with the technology, producing the stuff they just need.

Designs that adhere to these two conditions – and the associated derivative designs that evolve from them – are continuously available for production, in any number, with no tooling investment, anywhere and by anyone. For Ronen, this is no longer just an aspiration. “We’re talking about a new movement in its infancy here. People are taking their first steps with the technology, producing the stuff they just need.” Yet these early adopters are more into making things for the sake of making, regardless of what they create, whether it’s some mechanical toy or a decoration for their laptop.

Perhaps just for the sake of validating the Open Design movement, Ronen designed a chair: the Hack Chair.

“If you’re in a design movement, in a style, or if you’re an individual designer, you would probably want to do a chair that would embody the basic attitudes and points of view or technologies. The chair is a central object in our culture and a central object in design. So the Hack Chair is my first Open Design chair.  DESIGNERS  I wanted it to be an object or a chair that makes you say, ‘I’ve never seen anything like this before.’ At the same time, the Hack Chair is very sculptural, very dangerous, but also very funny; it’s pure expression. I had no buyer for it. I was not working for some producer who told me how to design it so it could be sold. I suppose it won’t be a bestseller, but that’s not the point. I did it because it helps me make a statement about being an independent designer. It says loud and clear that I’m able to design something like this, and share it, and make it open; if you want to make the chair more cushy and comfortable, it’s an open design. Go ahead, make it comfortable, add your nice round radiuses. I see the Hack Chair as very concise: my story, in a very basic product. Hack.” HACKING DESIGN

Of course Ronen’s Hack Chair employs certain procedures that are considered ‘clever’ in design, such as producing a three-dimensional object out of a single, two-dimensional sheet of metal. Ronen has been doing this for years, and has even given the technique a name: ‘thinology’. He wanted to invest this chair with a sense of his own aesthetic preferences:

“I was designing the chair so everything would look wrong and be as unconventional as possible; an un-chair, a chair that has a look that makes you stop and consider your own self, reassess your relation to an object that is not the expected. You may not enjoy its beauty, but you’ll enjoy the conflict between its appearance and your experience of sitting and of chairs in general. I could have designed it to be straight and rounded and nice, but I chose not to.

“The chair has conflict in it. There is some anger in it, there is some humour in it; there are many things in it that I want my viewer to experience. I don’t want them to just go out and buy it in the first place. It will be available to purchase shortly, but it is also open. There is an important connection between it being open and the way it looks. This is my choice; you have other choices, and you can have different points of view. If you’re a designer, or if you want to be a designer, or if you think you are a designer, you could make your own version. You are actually welcome to make your version.

“It looks edgy and sharp, but it’s quite sittable. It’s not the first chair to have a user-object conflict, but it’s the first one I’ve made.”

Ronen just sent me some photos from his Hack Chair exhibition, Recent Uploads, at Berlin’s Appel Design gallery. He extended the Hack Chair and produced several permutations. The exhibition was truly process-oriented. The walls were decorated with the remains of the 2D cut-outs.  AESTHETICS: 2D Throughout the evening, Ronen would take new sheets of metal and fold them, within a matter of a minute, into yet another Hack Chair derivative, a clear nod to the active process of creation rather than the finished product. People could sit in the chairs and interact with them; there were also miniature versions that the audience could buy and fold themselves. It was an intriguing concept – and indeed, the exhibition chairs were all sold out.

When sharing his own designs, Ronen offers friendly production instructions:

“In order to produce this object, you need to be somewhat proficient with handling DXF files, have knowledge of laser-cut part  AESTHETICS: 2D production, have two good hands and a creative personality that thrives on experimentation. If you have all these, there’s a good chance you are an industrial designer or design student; if not, welcome aboard.

I AM SAYING: PLEASE COPY. BUT IF YOU WANT TO MAKE A BUSINESS OUT OF IT, THEN CALL ME AND WE’LL DISCUSS ROYALTIES. IT IS MY INTELLECTUAL PROPERTY, AFTER ALL; THAT’S THE BOTTOM LINE.

“Please note that you can use this design as many times you like, change it, send it to others, and express through it any personal point of view and creativity, as long as you follow the Creative Commons licence.”

The Creative Commons license that he applies allows anybody to reproduce and modify his designs. There are only two limitations: these modifications and derivatives must be shared under the same license, and the licence prohibits commercial uses.
“I am saying: please copy. But if you want to make a business out of it, then please call me and we’ll discuss royalties. It is my intellectual property, after all; that’s the bottom line. If you want to use it, I would love you to use it; we can talk about it. But if you’re making money out of it, then I would like a share SHARING of it also. That’s the principle behind my design.

“Open Design is not an intellectual property trap. It is not something I do to get money out of suing companies. I consider my audience to be designers and makers and anyone who is interested in creating.

The intellectual property rights, the Creative Commons license I publish it under, these are just a legal framework that supports my work, but they are not at the centre. The centre is creativity through designing objects.”

Ronen is well aware that his ability to prosecute somebody is fairly limited, particularly if a big manufacturer copied his designs illegally, without his consent.

“Copyright protection gives you the big guns, but can you afford the ammunition? You can register your intellectual property, but you don’t usually have the money to defend it. This is life; the big fish eat the little fish.”

“Suppose you have a good bicycle. You like it and you want to keep it, so you buy a really nice lock for it. If a thief truly wants your bicycle, no matter how good your lock is, he will find a way to steal your bicycle. Intellectual property protection is exactly the same. I’m not saying that I’m leaving my bicycles completely unlocked; they have a lock. But the lock says, ‘hey, why don’t you take a ride and give it back when you’re finished.’ So you can take it out for a test drive, but if you want to keep it, I’m asking you to buy it from me, and I am willing to sell it to you. If you want to produce it, I will let you do it. There are many other options available too. People should just be honest about it.”

And many people are honest. While Ronen gets many emails asking if he’s really serious about sharing his designs, he does not get to see most of the private copies or modifications. An exception was São Paulo-based designer Oswaldo Mellone, who produced a Hanukkah design based on Ronen’s Candle Holder1 and sold it at a gallery; proceeds went to a local educational project.

Suppose you have a good bicycle. You like it and you want to keep it, so you buy a really nice lock for it. If a thief truly wants your bicycle, no matter how good your lock is, he will find a way to steal your bicycle. Intellectual property protection is exactly the same.

Ronen is not out to squeeze every eurocent he could possibly get from every user of his designs; he does not even see recovering production expenses as a truly commercial enterprise.

“My answer to this is always, you’re welcome to sell them to cover your expenses; it would be my pleasure to have you make some money out of it.”

He occasionally makes some money himself, too. In September 2009, his original prototype of the Italic Shelf was included in the Phillips de Pury & Co. auction ‘Now: Art of the 21st Century’. The estimate was around four to five thousand pounds; the shelf sold for six and a half thousand pounds, plus the 25% commission for the auction house, bringing the final sales price to GBP 8,125.

“The interesting thing about selling in an auction is that buyers usually research the background of what they might be going to buy, because each piece has a name, a designer’s name, a history, and so on. They probably knew beforehand that the shelf was Open Design and that anybody else could copy it and build it, so there is an interesting conflict between the rarity of an object and the fact that anybody can copy it. Even so, they got the prototype. There is no real difference between the prototype and a copy. So putting yourself in that situation is an interesting concept. I wanted to do it that way, displaying things in a gallery. It takes Open Design and the concomitant legal copying of an object and brings about a confrontation with the collector’s situation, collecting rare things or limited editions. The limited edition is exactly the same as any other copy to be produced anywhere by anybody, legally. This is an interesting intellectual puzzle.”

The only thing that differentiates the original from any other original copies is a little brass plaque on the edge of the shelf, incised with the words ‘RONEN KADUSHIN 2008/ITALIC SHELF PROTOTYPE’, naming the Open Designer as the author.

In the meantime, Ronen is garnering increasing attention with his Open Design products. His Square Dance coffee table already made it into Wired in 2009. The iPhone Killer which he launched in a style worthy of Steve Jobs, presenting it at Premsela’s Unlimited Design Forum in 2010, landed him a prominent spot on some of the most widely read web publications: Wired, BoingBoing, The Huffington Post. Ronen knows how the Net ticks; with no real marketing budget to speak of, his self-created media ripples are not to be underestimated. And he is certainly enjoying his ‘15 megabytes of fame’ on the internet.

Yet Ronen’s real Open Design business is clearly geared towards the producers of lighting and furniture accessories. It’s a business-to-business thing. If we’re talking about royalties and serious marketing, and production and branding, and so on, this is what I’m looking at.

THERE’S NO REAL DIFFERENCE BETWEEN THE PROTOTYPE AND A COPY.

“If an accessory producer or lighting manufacturer would want to include it in their collection, then we would have to sit down and work out the details: not just royalties, but the whole concept. There is no big company today – no big producer, no mid-sized producer, not even a small producer – that is doing something that is in any way connected to Open Design. There is mass customization,  MASS CUSTOMIZATION yes, but not Open Design as such. I would like to convince the producer that it could be to his advantage to try it out, and it would not cost him more to try it out. Actually, it could be a marketing pitch for the company to position itself as the first business to embrace Open Design. This claim would be very likely to benefit the company that does it.”

The real benefit for a producer that adopted the principles of Open Design would of course be that a second and third Open Design product would not incur any extra costs for tooling. They would only have to care about marketing, packaging, production. However, the companies Ronen has spoken to so far have not considered this concept to be relevant. “They are investing in tooling to make a specific product. If a company produces something made of plastic, or that involves tooling by definition, Open Design becomes irrelevant. Making it open would also not make it relevant for any other user to make modifications. They don’t have the equipment, they don’t have the know-how,  KNOWLEDGE they don’t have the money; it’s too complicated.”

I’m not pleading, “oh please, please, do my design for a 3% royalty”, with the manufacturer equivocating, “no, well, maybe later”, and then changing it and so on.

Ronen still believes that commercial adoption of open design could be possible. Yet he’s not a fundamentalist about his own ideas; he is not pushing open design to companies. Rather, he is introducing it gradually, helping companies develop a basic understanding that they have ‘this type of designer’ in their network of contexts, a designer who sees things a little differently. This approach seems to be paying off; Ronen secured a rather large project about two years ago. “The company approached me because they liked the Open Design concept, and they liked the product that resulted from this concept. I was never put at a disadvantage, I was never mistreated; quite the opposite.”

So one day, Ronen dreams, another producer might approach him, asking him to become their chief designer. “What I would like to see is not about getting money from other people. I just want to be … let’s call it an ‘art director’ on this kind of projects. I want to be in a position where I can influence how people understand what quality is, how to make the connection between the producer, Open Design and consumers, to search for the next stage, things like that. That would put me in a very comfortable position; I would enjoy that. But it will take time. I’m waiting patiently, no hurry. I’m doing other things at the moment. But my plan is to introduce this concept to companies.”

Ronen’s Hack Chair has all the characteristics of an open design product. It is native to the internet, and was clearly designed to use the internet as a marketing and distribution channel.

Ronen believes that “if you do something this way, it will be watched, viewed, produced, copied, talked about, blogged about in more places than if it was a closed design, if it was a normal design”.

“So, in this situation, the designer is at the centre of an enterprise. If I meet a manufacturer, we’re talking eye-to-eye. I’m not pleading, ‘oh please, please, do my design for a 3% royalty’, with the manufacturer equivocating, ‘no, well, maybe later’, and then changing it and so on. It’s really about having control of your creative output.

“At a fairly low cost, a designer can select suitable producers and sell products at a price he or she thinks it appropriate. It is a flexible venture that adapts easily to the customers’ needs and locations, and it is scalable in terms of quantities. The presence of the designs on the web gives a large number of designers, producers and entrepreneurs access to creative content to experiment with. It can be considered as a business opportunity, on a ‘try before you buy’ basis. It also creates space for new business practices that are unknown in ‘normal’ circumstances”, Ronen writes in his 2009 Open Design primer. 4

At a fairly low cost, a designer can select suitable producers and sell products at a price he or she thinks it appropriate.

Ronen talks about his experiences with design schools and how they see open design. “Students are kind of suspicious, but once I tell them how I make money out of it, why people don’t copy from me, they get it; they understand that I’m on to something here. And the design professors complain that it’s not working for them anymore; they say that design is not what it used to be. So maybe we are discovering a new opportunity, a new approach here.”

This new approach as proposed in Ronen Kadushin’s concept of Open Design has another interesting aspect as well. “You’re designing for a consumer, but you’re also designing for a user. Somebody has to use it as a design, to change the design. And this distinction causes a lot of confusion in students. They don’t know how to handle it until they are pretty far into the projects.”

However, once they finally understand the concept, some students produce very interesting transformations. In a course on open design at the Institute of Advanced Architecture in Barcelona, students converted the Square Dance table into what they imagined could become a shelter for use in South America. For another design, they took the idea behind the construction of the Italic Shelf to build a church hall. Ronen is fascinated by what these students are doing: “They are turning Open Design into architecture.”

In the future, maybe ten years from now, Ronen imagines a couple walking down the street, peeking into the shop windows of designer outlets and saying to each other, “God, I simply can’t stand this Open Design junk anymore, it’s everywhere. Can’t they come up with something else?” So there still will be designers, their products will still be sold in design shops, and there will still be couples going shopping to furnish their new home.

But maybe the situation will have changed fundamentally. Maybe the producer will have disappeared altogether, or perhaps just have taken on a completely different role. Ronen is searching how to make his vision of Open Design a reality: “I have to find a way to ensure that my creativity will not stop at the producer’s front door. I will be independent in pursuing that goal.”

  1. link: creativecommons.org/licenses/by-nc-sa/3.0/
  2. Kadushin, R. Open Design. Exploring creativity in IT context. An Industrial Design education program by Ronen Kadushin, 2009. Available at www.ronen-kadushin.com/uploads/2382/Open%20Design%20edu3.pdf, accessed 11 January 2011.
  3. Kadushin, R. Open Design Manifesto. Presented at Mestakes and Manifestos (M&M!), curated by Daniel Charny, Anti Design Festival, London, 18-21 September 2010. Available at ronen-kadushin.com/uploads/2440/Open%20Design%20Manifesto-Ronen%20Kadushin%20.pdf, accessed 11 January 2011.
  4. Kadushin, 2009, op.cit.
]]>
http://opendesignnow.org/index.php/article/the-beginning-of-a-beginning-of-the-beginning-of-a-trend-peter-troxler/feed/ 1183
LIBRARIES OF THE PEER PRODUCTION ERA / PETER TROXLER http://opendesignnow.org/index.php/article/libraries-of-the-peer-production-era-peter-troxler/ http://opendesignnow.org/index.php/article/libraries-of-the-peer-production-era-peter-troxler/#comments Fri, 27 May 2011 08:37:00 +0000 remko http://opendesignnow.org/?p=411 Continue reading ]]> Mapping the landscape of commons-based peer production, Peter Troxler analyses the arena of open source hardware and looks into various initiatives being spawned by fabrication labs, trying to identify their business potential and asking how these initiatives contribute to giving people more control over their productivity in self-directed, community-oriented ways.

Peter Troxler

In today’s society, individuals often collaborate in producing cultural content, knowledge, and other information, as well as physical goods. In some cases, these individuals share the results and products, the means, methods and experience gained from this collaboration as a resource for further development; CO-CREATION this phenomenon is referred to as commons-based peer production.

Commons-based peer production is most widely practiced in the area of software development: open source software. The most prominent examples of open source software are the Linux operating system and the Apache web server. Open source is not the exclusive domain of software, however; it has spread into other domains, from culture and education to knowledge discovery  KNOWLEDGE and sharing. Examples include the many people who use Creative Commons licences, CREATIVE COMMONS the Blender movies, VEB Film Leipzig, the countless initiatives in open education, the SETI@home project, Wikipedia, Open Street Map, or Slashdot. Commons-based peer production is generally attributed to digital revolutions: the widespread availability of new, digital information technologies. 1

While its origins can indeed be traced back to digital development, commons-based peer production goes beyond the purely digital domain. A number of open source hardware projects currently aim to produce tangible goods through a peer-production approach, not to mention ‘fabbing’ initiatives (abbreviated from fabrication) that seek to make it possible for anyone to manufacture their own goods.

Perhaps these initiatives are emerging because many “physical activities are becoming so data-centric that the physical aspects are simply executional steps at the end of a chain of digital manipulation”, as Shirky suggests. 2 Then again, perhaps the commons-based peer production model “provides opportunities for virtuous behavior” and so “is more conducive to virtuous individuals”. 3

Yochai Benkler argues that “in the networked information economy – an economy of information, knowledge, and culture that flow through society over a ubiquitous, decentralized network – productivity and growth can be sustained in a pattern that differs fundamentally from the industrial information economy of the twentieth century in two crucial characteristics. First, non-market production (…) can play a much more important role than it could in the physical economy. Second, radically decentralized production and distribution, whether market-based or not, can similarly play a much more important role”. 4 TREND: NETWORK SOCIETY

The business, or rather, the benefits of commons-based peer-production are not uniquely monetary. 5 The rewards include indirect mechanisms, such as the positive effects of learning on future earnings or enhanced reputation, which in turn can lead to future (paid) contracts for consultancy, customization, maintenance or other services. The business also includes what economists call hedonic rewards: not consumption, but the act of creation gives pleasure to the prosumers. Peer recognition is another physiological reward, involving ego gratification. This part of the business is an exchange of production for consumption that does not rely on monetary means.

Open Source Hardware

Since 2006, Philip Torrone and Limor ‘Ladyada’ Fried have been curating Make Magazine’s definitive guide to open source hardware projects MANIFESTOS that started out as a holiday season spending guide to ‘gifts that give back’. 6 Under the heading Million Dollar Baby – probably alluding to the underdog nature of open source hardware – they presented fifteen examples of companies at O’Reilly’s Foo Camp East in May 2010:

Adafruit Industries, makers of educational electronic kits; Arduino, the open source computing platform; Beagle Board, a manufacturer of open development boards for computers; Bug Labs, known for their modular Lego-type computer hardware; Chumby, standalone Internet content viewers; Dangerous Prototypes, Dutch hackers turned entrepreneurs who sell an open source reverse engineering tool; DIY Drones, for open source unmanned aerial vehicles (autopilot drones); Evil Mad Scientist Labs and their fun educational projects; Liquidware, who make Arduino accessories; Makerbot Industries, the company behind MakerBot 3D printers and the sharing platform Thingiverse.com; Maker Shed, the shop behind Make Magazine and Maker Fair; Parallax, education in microcontroller programming and interfacing; Seed Studios, for Chinese Arduino derivatives; Solarbotics, for solar kits, robot kits and BEAM robotics; Spark Fun Electronics, for education and prototyping electronics products.

All these companies are selling open source hardware and creating some kind of community around them. Together, they generate a turnover of about US$ 50m, or so Torrone and Limor estimate. They reckon that there are currently about 200 open source hardware projects of a similar kind. The open source hardware community will reach a turnover of US$ 1b by 2015, according to the forecasts made by Torrone and Limor. Some of these communities have seen exponential growth recently, such as the RepRap community. 7

Kerstin Balka, Christina Raasch and Cornelius Herstatt went to great lengths to collect examples of open source hardware projects through Open-Innovation-Projects.org. In 2009, their database consisted of 106 entries, 76 of which were truly open development of physical products, or open design. Open design as defined on that site is characterized by revealing information on a new design free of charge, with the intention of collaborative development of a single design or a limited number of related designs for market exploitation. Among others, their database includes community projects such as Openmoko, Fab@home, OpenEEG, One Laptop Per Child, SOCIAL DESIGN Mikrokopter, or RepRap.

it is naïve to believe that open source software practices could be copied to and applied in the open design realm without any alteration, ignoring the constraints and opportunities of materiality.

Balka, Raasch and Herstatt used this database of open design projects for statistical studies to identify similarities and differences in open source software projects. 8 They found that, “in open design communities, tangible objects can be developed in very similar fashion to software; one could even say that people treat a design as source code to a physical object and change the object via changing the source”. 9 However, they also find that “open parts strategies in open design are crafted at the component level, rather than the level of the entire design” 10 and that “the degree of openness differs significantly between software and hardware components, in the sense that software is more transparent, accessible, and replicable than hardware”. 11 WYS ≠ WYG Indeed, despite the many academic discussions that support such a view, it is naïve to believe that open source software practices could be copied to and applied in the open design realm without any alteration, ignoring the constraints and opportunities that the materiality of design entails.

Fabbing

Besides these single-aim or single-product projects, there are other initiatives promoting commons-based peer production primarily by sharing designs and encouraging people to ‘make things’. Some are about making things for the fun of it;  GRASSROOTS INVENTION the Maker Faire in the USA, Make Magazine and Craft Magazine are all good examples. Some initiatives are about easy sharing, distribution and promotion, such as Ponoko, Shapeways and Thingiverse. Others involve more serious or more ambitious social experiments, such as the Open Source Ecology with their experimental facility, Factor E Farm. 12

And there are initiatives of commons-based peer production that could be summarized under the heading of ‘shared machine shops’. 13  These initiatives are typically centred around workshops equipped with hand tools and relatively inexpensive fabrication machines (e.g. laser cutters, routers, 3D mills). Users produce two-dimensional and three-dimensional objects that once could have only been made using equipment costing hundreds of thousands of euros. They use digital drawings and open source software to control the machines, and they build electronic circuits and gadgets.

100k-Garages is “a community of workshops with digital fabrication tools for precisely cutting, machining, drilling, or sculpting the parts for your project or product, in all kinds of materials, in a shop or garage near you”. 14 Most of these workshops are located in the USA and Canada (about 180), with five shops in Europe and two in Australia. 100k-Garages are essentially establishing a network of distributed manufacturing shops that produce their users’ designs for a fee. They are providing a professional manufacturing service, rather than offering shop access for makers to make their own things themselves. Through quality of workmanship and standardization of equipment – the network is sponsored by ShopBot Industries, a maker of CNC routers – they are establishing a platform which guarantees the making end of it and frees users to focus on design. Ponoko, one of the preferred sharing platforms, enables further exchange.

TechShop is a group of workshops that are equipped with typical machine shop tools (welding stations, laser cutters, milling machines) and corresponding design software. TechShops are mainly based on the ‘gym model’: a monthly subscription buys users access to tools, machines, design software, and other professional equipment. Courses on how to use the tools are offered, too, for a fee. Located in Menlo Park, San Francisco and San Jose, CA, Raleigh, NC, Portland, OR, and Detroit, MI, they cater to a US-based clientele. 15 Chris Anderson describes them as an “incubator for the atom age”; 16 according to his account, the facilities are mainly used by entrepreneurs who come to a TechShop for prototyping and small batch production. The online member project gallery, however, shows such diverse projects as a 3D scan of an alligator skeleton, custom-made sports equipment, movie props, a laser-cut gauge for bamboo needles, a laser-etched laptop and an infrared heater for an arthritic dog.

Hackerspaces are another venue where peer production takes place, self-defined “as community-operated physical places, where people can meet and work on their projects”. 17 Emerging from the counterculture movement, 18 they are “place[s] where people can learn about technology and science outside the confines of work or school”. 19 Equipment and funding are collective endeavours.

A hackerspace might use a combination of membership contributions, course fees, donations and subsidies to sustain itself. Activities in hackerspaces evolve around computers and technology, and digital or electronic art. Hackerspaces are founded as local initiatives following a common pattern. The Hackerspaces ecosystem comprises several hundred member locations world-wide, of which roughly half are either dormant or under construction. 20 Becoming a hackerspace is essentially a matter of self-declaration – an entry on the hackerspaces.org wiki is sufficient – which lowers the barrier to entry enormously, at least for advanced computer users. However, this low barrier to entry is probably also the reason for the relatively large number of ‘registered’ but dormant hackerspaces. Collaboration  CO-CREATION between Hackerspaces has recently begun in the form of ‘hackathons’; these marathon sessions currently do not seem to extend beyond displaying the activities happening at the spaces taking part. 21

the open source label confers a certain coolness in some circles of a gadget-crazy world.

Fab Lab, short for fabrication laboratory, is another global initiative with a growing number of locations around the world. Fab Labs have a more conceptual foundation, as they emerged from an MIT course entitled ‘How To Make (almost) Anything’. 22 While there is no formal procedure on how to become a Fab Lab, the process is monitored by MIT, and MIT maintains a list of all Fab Labs worldwide. At the moment of writing, the Fab Lab community COMMUNITY comprises about sixty labs, with another fifty to open in the not-too-distant future. There are a few collaborative projects within the community, and a number of initiatives to exchange designs and experience between the labs. Similar to the hackathons, but occurring more regularly and systematically, all the labs around the world can get in contact with each other through a common video conferencing system hosted at the MIT which is used for ad-hoc meetings, scheduled conferences and the delivery of the Fab Academy training programme.

Academic publications note a number of examples of Fab Lab projects. Mikhak and colleagues report on projects in India, at Vigyan Ashram Fab Lab just outside the village of Pabal in Maharashtra, and at the Costa Rica Institute of Technology in San Jose, Costa Rica. The projects in India are about developing controller boards to facilitate more accurate timing of the diesel engines they use to generate electrical power, and developing devices to monitor milk quality not at the collection centres and the processing plants, but at the producer level. The Costa Rican projects revolve around wireless diagnostic modules for agricultural, educational and medical applications, for example monitoring a certain skin condition in a rural village. 23 SOCIAL DESIGN

In FAB: The Coming Revolution on Your Desktop, Neil Gershenfeld lists examples of what students at MIT made in his course on ‘How to Make (almost) Anything’. The list includes a bag that collects and replays screams, a computer interface for parrots that can be controlled by a bird using its beak, a personalized bike frame, a cow-powered generator, an alarm clock that needs to be wrestled with to turn it off, and a defensive dress that protects its wearer’s personal space. 24

Arne Gjengedal reports on the early projects at the Norwegian MIT Fab Lab at Solvik farm in Lyngen. His list includes the ‘electronic shepard’ (sic) project that used telecom equipment  RECYCLING to track sheep in the mountains, the ‘helmet wiper’ for clearing the face shield in the rain, the ‘wideband antenna’ for the industrial, scientific and medical (ISM) radio band, the ‘Internet 0’ project for a low-bandwidth internet protocol, the ‘perfect antenna’, and the ‘local position system’ for positioning of robots in the lab. 25

Diane Pfeiffer describes her own experiments and projects in the context of distributed digital design. Her experiments were Lasercut News, Digital Color Studies & Pixelated Images, Lasercut Screen, and Lasercut Bracelets (which she sold at a local shop); the projects she worked on were Distorted Chair and Asperatus Tile. 26

The Business Promise

All those initiatives represent various aspects of a commons-based peer production ecosystem (non-market or radically decentralized production) or are at least contributing to the emergence of such an ecosystem.

Torrone and Fried have shown how a regular and sizeable market has grown around open source hardware. Those open source hardware businesses clearly operate under market conditions and their production is not radically decentralized. Indeed, Torrone and Fried’s agenda might even be said to ‘prove’ that open source hardware results in marketable products. Evidently, the open source label confers a certain coolness in some circles of a gadget-crazy world.  OPEN EVERYTHING

Yet many of these open source hardware components – Arduino and MakerBot being the most prominent examples – are providing open source ingredients to a peer production ecosystem at a price that outweighs the pain of sourcing all the parts, having to deal with manual assembly, or facing issues of incompatibility. As components, they can become building blocks of higher-order machines. In that sense, they function as a platform for open source development. As far as the components themselves are concerned, they are open source in the sense that their internal structure and functioning are made transparent and potentially modifiable.  BLUEPRINTS

As flat-packed, self-assembly, open source machines, they are the choice of many peer-producers and form an important basis for highly decentralized – and highly customized – production. It becomes possible to own machines at the price of building them rather than the price of buying them pre-assembled. DOWNLOADABLE DESIGN And their open source nature makes it easier to adapt them to specific requirements or even repurpose them in novel ways.

Rather than commoditizing ingredients, 100k-Garages commoditize one part of the making process: the cutting. If there is a dense enough network of such facilities in any particular region, this makes a certain practical sense in terms of efficiency and safety, given the somewhat demanding fabrication process of a ShopBot CNC router as compared to a laser cutter. However, it establishes a division of labour, and it deprives user-clients from accessing potential learning experiences and therefore potentially contributing to a more general commons. The result is that the ShopBot remains a commons apart, and somewhat closed at that.

TechShops, Hackerspaces and Fab Labs are all providing facilities and knowledge as part or rather as a basis of a commons. The environment in which TechShops operate is strictly commercial. Peer production might happen by accident, but there seem to be no incentives to support it. As an ‘incubator for the atomic age’, they remain safely in the market arena, yet they are effectively creating opportunities for decentralized prototyping and production.

In contrast, Hackerspaces live up to their name, definition and history by building on non-market, sometimes even anti-market  MANIFESTOS commons-based principles. Their core focus is doing personal and collective projects. And Hackerspaces are far from exclusive; they frequently include casual users who might spend a lot of time in hackerspaces. Nick Farr even speculates that those casual users are “perhaps making more significant contributions than regular members, but decline to officially join for many different reasons.” 27

The Fab Labs’ commitment to a commons is clear from how they are structured. Fab Labs subscribe to a charter which, among other things, stipulates open access, establishes peer learning as a core feature and requires that “designs and processes developed in fab labs must remain available for individual use”. In the same clause, however, the charter also allows for intellectual property to be protected “however you choose”. Underlining this point, it explicitly continues that “commercial activities can be incubated in fab labs”, while cautioning against potential conflict with open access, and encouraging business activity to grow beyond the lab and to give back to the inventors, labs, and networks that contributed to their success. 28 Fab Labs incorporate an interesting mix of characteristics that might seem contradictory at first, but might well be considered the best practical approximation of Benkler’s networked information economy.  TREND: NETWORK SOCIETY


‘Libraries’ of the Peer Production Era

The fabbing universe could be described on two dimensions, characterizing initiatives as more reproductive or more generative in their nature, and as more infrastructure-oriented or more-project oriented in their approach.


Books, Libraries, and the Choices of Self-Directed Productivity

Open source hardware – as components or production equipment – not only embodies the technical knowledge of products and production the way that traditional components and machines once did. In sharp contrast to the opaque and impenetrable black boxes of advanced 20th-century engineering,  WYS ≠ WYG they give users access to that knowledge as a result of their open source design. Akin to books, which seem meaningless to people who cannot read, but open their content to those who have achieved literacy, open source hardware reveals its technicalities to those who grasp that language.

If open source hardware can be compared to the ‘books’ of commons-based peer production, then TechShops, Hackerspaces and Fab Labs are its libraries. Traditional libraries act as common points of access to knowledge coded in books, and in fact offer locations where knowledge can be produced. Similarly, copy shops allow anybody to produce their own range of print products, from cards to books, T-shirts and mugs. Cyber-cafés also provide access to knowledge, as locations where everybody can link into a common information and communication infrastructure. Those new labs are the places that provide general access to the tools, methods and experience of peer production. Indeed, the National Fab Lab Bill presented to the US Congress in 2010 EVENT argues along these lines, aiming “to foster a new generation with scientific and engineering skills and to provide a workforce capable of producing world class individualized and traditional manufactured goods”. 29

The business proposals of open source hardware and the various fabbing initiatives are not equally straightforward in every case. As discussed, commons-based peer production has found ways to generate monetary returns by selling open source products, charging memberships fees in open source communities, or providing paid education and manufacturing services. To some extent, the strong appeal of commons-based peer production can probably be attributed in part to its hedonic rewards: the pleasure of being creative, the pride of recognition by peers, the feeling of achievement and status. However, there are no clear examples of indirect mechanisms deriving tangible benefits from these hedonic rewards, such as makers getting corporate development assignments or contracts as product managers thanks to their reputation in open hardware design. If such examples exist, they are not being discussed openly. And commons-based peer production has yet to realize its potential as a platform for many more developers and producers to generate a substantial income under market or non-market conditions.

As Yochai Benkler notes, it is “important to see that these efforts mark the emergence of a new mode of production, one that was mostly unavailable to people in either the physical economy (…) or in the industrial information economy.” 30 The initiatives of commons-based peer production give more people more control over their productivity in self-directed and community-oriented ways. The variety of the initiatives give people a range of fundamentally different options to choose from, and indeed requires them to make those choices instead of accepting a mode of consumption that has been predetermined by a lobby of the current “winners in the economic system of the previous century.” 31

Even if the emergence of open source hardware and fabbing initiatives only dates back a few decades, commons-based peer production is still in its early days. Nobody knows yet whether the one and only correct, long-lasting and sustainable approach to this new mode of production has been found yet – or even if such a uniform approach will ever emerge.
REVOLUTION It seems much more likely that the current trend will develop into a plethora of different models that embrace various aspects of commons-based peer production, with users switching between different models as appropriate. It will be interesting to see whether and how traditional businesses will be able to adapt to a new reality of real prosumer choice.

  1. See e.g. Benkler, Y, The Wealth of Networks. How Social Production Transforms Markets and Freedom. New Haven and London, Yale University Press, 2006.
  2. Shirky, C, ‘Re: <decentralization> Generalizing Peer Production into the Physical World’. Forum post, 5 Nov 2007 at finance.groups.yahoo.com/group/decentralization/message/6967 , accessed on 30 August 2010.
  3. Benkler, Y and Nissenbaum, H, ‘Commons-based Peer Production and Virtue’, The Journal of Political Philosophy, Vol. 14, No. 4, 2006, p. 394.
  4. Benkler, Y, ‘Freedom in the Commons: Towards a Political Economy of Information’, Duke Law Journal, Vol. 52, 2003, p. 1246f.
  5. See also Benkler, Y, ‘Coase’s Penguin, or, Linux and The Nature of the Firm’, The Yale Law Journal, Vol. 112, 2002.
  6. Available online at blog.makezine.com/archive/2006/11/the_open_source_gift_guid.html
  7. Jones, R, Bowyer, A & De Bruijn, E, ‘The Law and the Prophets/Profits’. Presentation given at FAB6: The Sixth International Fab Lab Forum and Symposium on Digital Fabrication, Amsterdam, 15-20 August 2010. Available at cba.mit.edu/events/10.08.FAB6/RepRap.ppt , accessed 30 August 2010.
  8. Balka, K, Raasch, C, Herstatt, C, ‘Open Source beyond software: An empirical investigation of the open design phenomenon’. Paper presented at the R&D Management Conference 2009, Feldafing near Munich, Germany, 14-16 October 2009. See also: Balka, K, Raasch, C, Herstatt, C, ‘Open Source Innovation: A study of openness and community expectations’. Paper presented at the DIME Conference, Milan, Italy, 14-16 April 2010.
  9. 2009 study, p. 22.
  10. 2010 study, p. 11.
  11. Idem.
  12. Dolittle, J, ‘OSE Proposal – Towards a World-Class Open Source Research and Development Facility’. Available online at openfarmtech.org/OSE_Proposal_2008.pdf , accessed 6 June 2010.
  13. Hess, K. Community Technology. New York: Harper & Rowe, 1979.
  14. 100kGarages. Available online at www.100kgarages.com , accessed 30 August 2010.
  15. TechShop is the SF Bay Area’s only open-access public workshop. Available online at techshop.ws/ , accessed 30 August 2010.
  16. Anderson, C, ‘In the Next Industrial Revolution, Atoms Are the New Bits’, Wired, Feb. 2010. Available online at www.wired.com/magazine/2010/01/ff_newrevolution/all/1 , accessed 4 June 2010.
  17. HackerspaceWiki. Available online at hackerspaces.org/wiki/ , accessed 30 August 2010.
  18. Grenzfurthner, J, and Schneider, F, ‘Hacking the Spaces’ on monochrom.at, 2009. Available online at www.monochrom.at/hacking-the-spaces/ , accessed 30 August 2010.
  19. Farr, N, ‘Respect the past, examine the present, build the future’, 25 August 2009. Available online at blog.hackerspaces.org/2009/08/25/respect-the-past-examine-the-present-build-the-future/ , accessed 30 August 2010.
  20. List of Hackerspaces. Available online at hackerspaces.org/wiki/List_of_Hacker_Spaces , accessed 30 August 2010.
  21. Synchronous Hackathon. Available online at hackerspaces.org/wiki/Synchronous_Hackathon , accessed 30 August 2010.
  22. Gershenfeld, N, FAB: The Coming Revolution on Your Desktop. From Personal Computers to Personal Fabrication, Cambridge: Basic Books, 2005, p. 4.
  23. Mikhak, B, Lyon, C, Gorton, T, Gershenfeld, N, McEnnis, C, Taylor, J, ‘Fab Lab: An Alternative Model of ICT for Development’. Paper presented at the Development by Design Conference, Bangalore, India, 2002. Bangalore: ThinkCycle. Available online at: gig.media.mit.edu/GIGCD/latest/docs/fablab-dyd02.pdf , accessed 11 July 2010.
  24. Gershenfeld, op.cit.
  25. Gjengedal, A, ‘Industrial clusters and establishment of MIT Fab Lab at Furuflaten, Norway’. Paper presented at the 9th International Conference on Engineering Education, 2006. Available online at: www.ineer.org/Events/ICEE2006/papers/3600.pdf , accessed 3 March 2010.
  26. Pfeiffer, D, Digital Tools, Distributed Making & Design. Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfilment of the requirements for the Master of Science in Architecture. Blacksburg, VA: Virginia Polytechnic Institute and State University, 2006.
  27. Farr, N, ‘The Rights and Obligations of Hackerspace Members’, 19 August 2009. Available online at blog.hackerspaces.org/2009/08/19/rights-and-obligations-of-hackerspace-members/ , accessed 31 August 2010.
  28. Fab Charter, 2007. Available online at fab.cba.mit.edu/about/charter/, accessed 11 January 2011.
  29. H.R. 6003: To provide for the establishment of the National Fab Lab Network (…). Available online at www.govtrack.us/congress/billtext.xpd?bill=h111-6003, accessed 13 Oct 2010.
  30. Benkler, Y, ‘Freedom in the Commons: Towards a Political Economy of Information’, Duke Law Journal, Vol. 52, 2003, p. 1261.
  31. Idem, p. 1276.
]]>
http://opendesignnow.org/index.php/article/libraries-of-the-peer-production-era-peter-troxler/feed/ 0
MADE IN MY BACKYARD / BRE PETTIS http://opendesignnow.org/index.php/article/made-in-my-backyard-bre-pettis/ http://opendesignnow.org/index.php/article/made-in-my-backyard-bre-pettis/#comments Fri, 27 May 2011 08:33:33 +0000 remko http://opendesignnow.org/?p=409 Continue reading ]]> Envisioning the potential of open source tools to facilitate making, Bre Pettis retraces the thorny and convoluted path from wanting to produce self-replicating robots, through a series of prototypes, to being at the core of a little universe of 2,500 MakerBots. He reports just a few examples of what makers and artists have made with the MakerBot and wonders what the future might hold.

Bre Pettis

2007: Pizza around the Clock

In 2007, I was actively recruiting hardware hackers in New York City to be part of NYCResistor, a hackerspace where we could make anything together. I met Zach at an NYCResistor microcontroller study group. After hearing about self-replicating robots, I spent the autumn in a corner of a film studio, where some friends of his were letting him work on RepRap robots  REPRODUCTION when films weren’t being made. We spent a lot of time working on the McWire RepStrap, a 3D printer  PRINTING made out of plumbing pipes. We would meet up, solder some new boards that he had designed from tutorials on the internet, swear at broken traces, and in general just have fun. One of the things to come out of this time was a commitment to LEDs. I remember him turning to me and remarking that he had not put LEDs on a PCB. At that point, we made a solemn vow that no electronics board would ever make it through the design process again without blinking LEDs.

We did not have a working machine yet, but for months on end, we seemed just hours away from getting it to work. We were close enough that I ordered my own plumbing pipes and bent aluminium to take to Vienna, Austria, where I had an artist-in-residence spot with Monochrom, an artist collective in the Museum Quarter. I enlisted the help of the local hackerspace; the entire crew there, including Marius and Philipp Tiefenbacher, and Red, helped out for a week straight. Back in those days, we had to make our own wiring harnesses for everything, and it took forever. The code wasn’t working yet, but it was constantly very close to working. We ate pizza round the clock.

2008: Printing Vodka Shot Glasses

This first Austrian experiment was beautiful.  HELLO WORLD It worked for about a minute before the first-generation electronics burned traces and let the magic smoke out. The extruder was made from a mix of ballpoint-pen hardware and angled aluminium that was ground down with a Dremel, a handheld rotary grinder. We pulled stepper motors from old disk drives and scanners found in the depths of the Metalab archive. We had planned to print out shot glasses at Roboexotica, the cocktail robotics festival  EVENTS  in Vienna that happens every winter, but our machine failed completely; we couldn’t even print out swizzle sticks. Even more shame was heaped on our failure when we were awarded the ‘lime’ award, which is reserved for non-functioning robots. I left the machine in Vienna with Marius and Philipp. By the next year’s Roboexotica festival, they had fixed it up and got it working. Through a combination of brute force and alchemical magic, they spent the cocktail festival of 2008 printing out shot glasses that they promptly filled for visitors with a horrid Scandinavian concoction of vodka and Fisherman’s Friend throat lozenges. Robots and alcohol are a fantastic combination.

Finally, the ordinary person is in the unique position of being able to make almost anything with off-the-shelf modules, parts, community and shared code.

Back in the States, after I had left the McWire machine in Vienna, NYCResistor had found a location and the hardware hacking club was in full swing. Starting with nine people, we created a wonderful clubhouse for hardware hackers. The NYCResistor motto is ‘Learn, Share, and Make Things’. Early on, we chose to collectively share our tools, and we pooled our money to buy a $20,000 laser cutter. The team at NYCResistor is a special group of people who are not afraid to push technology forward and with a tendency towards the absurd; almost anything is possible. Electronics have gotten to the place where creating the electronics of your dreams has become a real possibility. Microcontrollers like the Arduino are accessible. Blogs like Make Magazine and Hackaday, as well as countless personal blogs, are fantastic resources for tinkerers. Finally, the ordinary person is in the unique position of being able to make almost anything with off-the-shelf modules, parts, community and shared code.

On a Saturday in August 2008, Zach and I started Thingiverse to give people a place to share digital designs for things. We had been telling people that downloading designs would be possible someday. Since nobody had created a library of digital designs that allowed people to share their work under open licences, we created it ourselves. Thingiverse is now a thriving community where sharing runs rampant and creativity is found in abundance.

Later that year, Zach got a Darwin up and running, but that design had so many flaws that getting it to work was a challenge. It extruded plastic for a few minutes before this model joined the ranks of machines that release the magic smoke. It was very disappointing. He had spent years trying to get a machine working, and then it worked for only a few minutes before failing completely. We had developed a taste for 3D printing by working on the RepRap project, and we wanted more. That early McWire machine and the RepRap
Darwin  REPRODUCTION showed us that creating an inexpensive 3D printer was possible. We promptly quit our jobs.

That winter, in December of 2008, Zach and I were at the 25th Chaos Communication Congress.  EVENTS Zach gave a talk about RepRap and I spoke about living a prototyping lifestyle. We got home and somehow came to the conclusion that we should start a company to make 3D printers that could be made with the tools we had at hand (the laser cutter) and as many off-the-shelf parts as possible. In January of 2009, we formed MakerBot Industries. Adam Mayer, another friend from NYCResistor, got involved; since he had spent 10 years working on firmware and software for embedded devices, he was immediately charged with making the software functional and friendly.

2009: MakerBot Industries

When we started MakerBot, we set different priorities than RepRap had done. Rather than focusing on self-replication, we wanted to make our first MakerBot the cheapest 3D printer kit that anyone could put together and have it actually work. Those first few months of MakerBot were intense. While prototyping during the first two months, we rarely left NYCResistor. We went through two whole cases of Top Ramen instant noodles and drank countless bottles of Club Mate, a carbonated and caffeinated soft drink from Germany. Powered by caffeine and carbohydrates, we used the tools we had at hand, a laser cutter, and off-the-shelf parts to create the MakerBot Cupcake CNC kit. We went to our friends for funding: Jacob Lodwick, who started Connected Ventures, and Adrian Bowyer, who initiated the RepRap project. They invested some money in us so we could start ordering the electronics, parts, motors and other things we needed to get the first kits together.

We worked hard on those first prototypes. After two months of work, we got the first machine to work at 8:15 on the 13th of March, 2009. As soon as it worked, we threw it in a Pelican case and took off to SXSW, the big music, film and interactive festival in Austin, Texas, where we shared it with the world for the first time. I set up shop in bars and printed endless amounts of shot glasses and twelve-sided dice. The machine printed flawlessly for the entire week. We had been able to pull together 20 kits; we expected to sell 10 of them that first month and have 10 in stock to sell the next month. When all 20 sold out in two weeks, we started staying up late running the laser cutter making the parts.

WE MAKE 3D PRINTERS TO OFFER AN ALTERNATIVE TO CONSUMERISM.

The buyers of those machines were brave. The electronics came unassembled and required SMD soldering, not a trivial task even for seasoned tinkerers with Heathkit assembly experience. Still, they were putting them together and they worked! The MakerBot Google group buzzed with chatter, shared pro tips and stories. Thingiverse, which up until then had been mostly a repository for DXF files for laser cutting, started seeing more and more 3D-printed designs.

Our mission at MakerBot is to democratize manufacturing. We make 3D printers to offer an alternative to consumerism. A year and a half after we began, there are now 2500 folks with MakerBots, and those people are living in a future where they can 3D print the tangible products of their imagination. They get to make a choice between buying something and 3D printing it.  DOWNLOADABLE DESIGN Kids that grow up in a household or classroom with a MakerBot have the option to 3D print the things they want as an alternative to shopping. If a MakerBot Operator needs a doorknob, they can check Thingiverse to see if someone else has made it. (There are 22 things tagged ‘knob’ on Thingiverse. 1 ) If you don’t like the knobs made available by the community of digital designers, you can download the designs and modify them if they are shared under an open licence, or you can design your own. This idea of sharing and being able to customize and modify other people’s designs is a powerful force in the universe. It goes beyond doorknobs to all sorts of practical and beautiful objects.

Designing things for 3D printers is still at an early stage. The programs have traditionally been set up as CAD programs, with a learning curve similar to Photoshop. Only recently have we seen programs like openSCAD that are designed for programmers who are interested in programming dynamic and parametric objects. Software engineers are now able to transform code  AESTHETICS: 3D into real physical objects.

MakerBot operators report that fixing things around the house is a point of pride for them. Thingiverse user Schmarty created his own shower curtain rings when his local store was out of stock. He shared the design on Thingiverse, and now nobody with a MakerBot
REPRODUCTION will ever have to buy shower curtain rings again. On the thing page for the curtain rod rings, Schmarty says:

“It’s a story that can happen to anyone. You move to a new town and leave your shower curtain behind. ‘No problem,’ you think, ‘I’ll just pick up a new liner at the pharmacy down the street.’ So, you trek to the local pharmacy and find the shower curtain liner you were looking for, only to discover that they are out of shower curtain rings, hooks, anything made for holding up a shower curtain! Facing down defeat and the very real possibility that you will have to take a dirty, inefficient bath, you come to a stunning realization: You’re a MakerBot owner. You live for these moments.”

Schmarty made his curtain rings in openSCAD and shared the source files, so you can download them and make curtain rings to your own specifications. One Thingiverse site user has already uploaded a design for a derivative variation with spikes. 2

When we made the MakerBot, we were limited by the size of our laser cutter.  AESTHETICS: 2D That meant that the first model, the MakerBot Cupcake CNC, can only make things that are 100x100x120 mm. That size is big enough to make things that are slightly larger than a coffee mug. Architects in particular complained about this, until Thingiverse user Skimbal created an amazing modular cathedral. 3 There are 10 different cathedral pieces that can be modularly connected to make your own customizable and expandable cathedral! This print pushes the limit of what a MakerBot can do. One of the limitations is in regard to overhangs. A MakerBot can do overhangs of around 45 degrees. It will still print things with overhangs, but they’ll turn out ‘fluffy’ and require cleanup and trimming after printing.  AESTHETICS: 3D

The MakerBot is open source. You can download the schematic and board files, the DXF laser-cutter files, and the software, firmware and parts lists. This allows MakerBot users to truly own their MakerBot inside and out. Charles Pax was one of the first to take advantage of this. He wanted to put the electronics on the inside of his MakerBot, so he modified the DXF laser-cutter files to accommodate an alternative power supply and gave his MakerBot a clean form factor. Unsatisfied with having to reset the machine after each print, he developed the MakerBot Automated Build Platform. Charles now works in the R&D department at MakerBot Industries, pushing the technology of personal fabrication forward.

Because it’s an open platform, you can swap out the tool heads easily. Besides the MakerBot plastruder, which extrudes plastic to create a programmed 3D shape, we’ve launched the MakerBot Unicorn Pen Plotter, which artists can use as a drawing tool. We also created the MakerBot Frostruder so that anyone can use their MakerBot to decorate cupcakes or print with anything that you can fit inside a syringe. This opens up a whole new range of possibilities for artists, chefs and DIY bio-experimenters. MakerBot operators have also used the stepper motors to create beautiful music. Bubblyfish, an 8-bit artist, has composed music for the MakerBot; many others have converted midi files to play their favourite music on the MakerBot.

MakerBot Operators are a great community for each other. When Cathal Garvey (creator of the DremelFuge 4 ) had a mouse problem, he wanted to catch the mouse without killing it, so he put a bounty out for a better mousetrap. He said that he would pay $25 to anyone who could make a MakerBottable mouse trap that actually caught his mouse. The day after he made the call for a MakerBot operators to design a better mousetrap, eight new designs for a mousetrap showed up on Thingiverse!

2010: Thing-O-Matic

Throughout 2009 and 2010, we have constantly updated both the software and the hardware of the MakerBot Cupcake CNC. Now, in autumn 2010, we’ve launched our second machine, called the Thing-O-Matic, which incorporates all the updates. This new machine has a new way of moving the print bed, which moves down along the Z axis as an object grows in height during printing. All the tolerances are tighter, and we have increased the build area to allow users to make bigger things.

At MakerBot Industries, we are excited about the future. This new industrial revolution is still in its early days.

At MakerBot Industries, we are excited about the future. This new industrial revolution  REVOLUTION is still in its early days. Ordinary people are taking up the tools of manufacturing, fabrication and production. I love to check Thingiverse.com to see what new possibilities have emerged during the night. There are so many opportunities for anyone who has the passion and interest to explore the frontier of personal manufacturing. With the tools at hand and the community of sharing that has developed around the MakerBot, the future is bright. Exciting innovations and amazing things are emerging.

2011: 2,500 MakerBots

When we first started MakerBot, we would wonder, “What will people do with it?” We knew that anything could happen; sure enough, we’ve shared the excitement as people shared their work. Now, with 2,500 MakerBots in the wild and more shipping every day, I am curious what the community will do together. What kinds of problems can 2,500 MakerBots solve? What kind of projects can we, as a worldwide community of sharing,  SHARING do together?

  1. http:// www.thingiverse.com/tag:knob
  2. http://www.thingiverse.com/thing:3465
  3. http://www.thingiverse.com/thing:2030
  4. http://www.thingiverse.com/thing:1483
]]>
http://opendesignnow.org/index.php/article/made-in-my-backyard-bre-pettis/feed/ 0
REDESIGNING DESIGN / JOS DE MUL http://opendesignnow.org/index.php/article/redesigning-design-jos-de-mul/ http://opendesignnow.org/index.php/article/redesigning-design-jos-de-mul/#comments Fri, 27 May 2011 08:31:21 +0000 remko http://opendesignnow.org/?p=401 Continue reading ]]> Open design is not a clear and unambiguous development or practice. Jos de Mul names a few of the problems he perceives with open design, without venturing to suggest any indication of how they might be solved. He then goes on to extend his well-documented and widely published ‘database’ metaphor to design, attempting to define the concept of design as metadesign.

Jos de Mul

At the 2010 edition of PICNIC,  EVENTS an annual Amsterdam event that aims to bring together the world’s top creative and business professionals to develop new partnerships and opportunities, Tom Hulme talked about ‘Redesigning Design’ 1 : “The design industry is going through fundamental changes. Open design, downloadable design  DOWNLOADABLE DESIGN and distributed design democratize the design industry, and imply that anyone can be a designer or a producer.” The subtext of this message seems to be that open design 2 is something intrinsically good and should therefore be promoted. Though I generally view open design as a positive development, it is important to stay alert to potential obstacles and pitfalls in order to avoid throwing out the (designed) baby with the proverbial bathwater. Like other fields influenced by the ‘open movement’, such as open source software, open science, and open technology, open design is closely connected with the rise of computers and internet. In view of this intrinsic association, the fundamental characteristics of the digital domain are worth examining further. To develop the positive aspects of open design without falling prey to its pitfalls, the designer should not abandon his activities as a designer; rather, the designer should redesign the activities themselves. The designer of the future has to become a database designer, a meta-designer, not designing objects, but shaping a design space in which unskilled users can access user-friendly environments in which they can design their own objects.  TEMPLATE CULTURE

Design as Open Design

Openness is a fundamental part of life – and so is closedness. Although organisms have to remain separate from their environment in order to retain their discrete identity, they also need to open themselves up to their environment in order to nourish themselves and to dispose of the by-products of their essential processes. However, whereas the openness of other animals is limited in the sense that they are locked up in their specific environment (their niche or Umwelt), human beings are characterized by a much more radical openness. Their world is unlimited in the sense that it is open to an endless supply of new environments and new experiences. This makes human life incredibly varied and rich, compared to the life of other animals, but at the same time it also imposes a burden on us that animals do not share. Animals are thrown in an environment that is just given to them (which does not exclude, of course, that their environment may sometimes undergo radical changes due to forces beyond their control or understanding), but humans have to design their own world. Dasein, or ‘being-in-the-world’, as Heidegger characterizes the life of human beings, is always design – not only in the sense that they have to shape an already existing world, but in the more radical sense that human beings have to establish their world: they always live in an artificial world. To quote German philosopher Helmuth Plessner, humans are artificial by nature. 3 This is a never-ending process. Over the past few decades, accompanying the development of computers and the internet, we are witnessing the exploration and establishment of a whole new realm of human experience that leaves hardly any aspect of our lives untouched, including the world of design. Although human beings have, from the very dawn of humanity, been characterized by a fundamental openness, the concept of ‘openness’ has become especially popular in the last couple of decades. Wikipedia – one of the most successful examples of an open movement project – offers the following definition: “Openness is a very general philosophical position from which some individuals and organizations operate, often highlighted by a decision-making process recognizing communal management by distributed stakeholders (users/producers/ contributors), rather than a centralized authority (owners, experts, boards of directors, etc.)”. 4 In the global information society, openness has become an international buzzword.  OPEN EVERYTHING One of the recent developments has been the emergence of open software, from operating systems to a variety of applications. However, the demand for open access not only concerns software, but also extends to all possible cultural content, ranging from music and movies to books. All information (enslaved by copyrights) wants to be free.  MANIFESTOS Moreover, open access is not limited to the digital world. An increasing number of scientists are pleading for open science and open technology. They cooperate with the public and demand open access for their publications and databases. The Open Dinosaur project, for example, which advertises itself on its website as ‘crowd-sourcing dinosaur science’, involves scientists and the public alike in developing a comprehensive database of dinosaur limb bone measurements, to investigate questions of dinosaur function and evolution. 5 However, in this case, the demand for open access not only targets the results of their research, but also extends their objects. The OpenWetWare organization not only promotes the sharing of information, know-how and wisdom among researchers and groups who are working in biology and biological engineering, it also tries to prevent efforts to patent living matter, such as DNA. I could list many more examples of the open movement, from open gaming to open love. We seem to be open to everything. In the presence of so many trends towards openness, it does not come as a surprise that we also are witnessing the emergence of an open design movement, albeit slightly later than in many other domains. It seems to be part of a shift in the world of design from form via content to context, or from syntax via semantics to pragmatics. 6 But what does ‘open design’ actually mean? In his article The Emergence of Open Design and Open Manufacturing, 7 Michel Bauwens distinguishes three different dimensions of open design:

Input side
On the input side we have voluntary contributors, who do not have to ask permission to participate, and use open and free raw material that is free of restrictive copyright  ACTIVISM so that it can be freely improved and modified. If no open and free raw material is available, as long as the option exists to create new one, then peer production is a possibility.

Process side
On the process side, it is based on design for inclusion, low thresholds for participation, freely available modular tasks rather than functional jobs, and communal validation of the quality and excellence of the alternatives (peer governance).

Output side
On the output side, it creates a commons, using licenses that insure that the resulting value is available to all, again without permission. This common output in turn recreates a new layer of open and free material that can be used for a next iteration.

Making Almost Anything

At the Fab Labs, founded by Neil Gershenfeld at MIT’s Center for Bits and Atoms, these three dimensions are merging. Fab Labs give individuals access to tools for digital fabrication; the only provisos are that you must learn to do it yourself, and you must share the lab with other uses and users. Users can use the Fab Lab ‘to make almost anything’. This sounds exciting – and indeed, it is. However, there are also some serious problems connected with open design, three of which are associated with the open source movement in general. The designer of the future has to become a meta-designer, shaping environments in which unskilled users can design their own objects. The first problem is particularly linked with open source movements that deal with the production of physical objects. Where any immaterial project is concerned, as long as there is a general infrastructure for cooperation, and there is open and free input that is available or can be created, then knowledge workers can work together on a common project. However, the production of physical goods inevitably involves costs of raising the necessary capital, and the result at least needs to recoup the costs. Indeed. such goods compete with each other by definition; if they are in the possession of one individual, they are more difficult to share, and once used up, they have to be replenished. Thanks to the 3D printer, this problem seems to become less urgent every month. The first consumer 3D printer has been announced for this autumn, produced by Hewlett-Packard.  PRINTING Although it will still cost about 5000 euros, it is expected that the price will soon drop below 1000 euros. Nevertheless, the laws of the physical economy will remain a serious constraint, compared to open source activities in the digital domain. A second problem for the open design movement is that many people are not able or willing to join the open design movement. Human life is an eternal oscillation between openness and closedness, and this holds true for design. Many people do not have the skills, the time or the interest to design their own clothes, furniture, software, pets, or weapons (see below, under the fourth problem). Third, we should not automatically trust those who think that they are able to design. As long as the individual is happy with the result, this issue does not seem like a big problem. But as soon as the crowd starts sourcing,  CROWDSOURCING the varied input might affect the reliability, functionality or the beauty of the design. Unfortunately, crowdsourcing does not always result in wisdom; quite often, all it produces is the folly of the crowds. In You Are Not a Gadget, 8 Jaron Lanier argues convincingly that design by committee often does not result in the best product, and that the new collectivist ethos – embodied by everything from Wikipedia to American Idol to Google searches – diminishes the importance and uniqueness of the individual voice, and that the ‘hive mind’ can easily lead to mob rule, digital Maoism and ‘cybernetic totalism’. 9 Fourth, I want to address an additional problem. We should not forget that the 3D printers and DNA printers  PRINTING in the Fab Labs and homes of the future probably will not be used solely to design beautiful vases and flowers; they could also be used to engineer less benign things, such as lethal viruses. This is not a doomsday scenario about a possible distant future. In 2002, molecular biologist Eckhard Wimmer designed a functional polio virus on his computer with the help of biobricks and printed it with the help of a DNA synthesizer; in 2005, researchers at the US Armed Forces Institute of Pathology in Washington reconstructed the Spanish flu, which caused the death of between 50 and 100 million people in the 1920s, roughly 3% of the world’s population at that time; to understand the virulent nature of that influenza virus, consider this: if a similar flu pandemic killed off 3% of the world population today, that would be over 206 million deaths. Although we have to take these problems seriously, they should not lead to the conclusion that we should avoid further development of open design. It should urge us not to ignore or underestimate the potentially dangerous pitfalls of open design, and invent new strategies to face up to them.

Design as Metadesign

In the digital era, we have moved from the computer to the database as material or conceptual metaphor. It functions as a material metaphor when it evokes actions in the material world. Examples of this are databases implemented in industrial robots, enabling mass customization (e.g. ‘built-to-order’ cars) and bio­technological databases used for genetic engineering. Conversely, it functions as a conceptual metaphor if it expresses a surplus of meaning that adds a semantic layer on top of the material object.

The psychologist Maslow once remarked that if the only tool you have is a hammer, it may be tempting to treat everything as if it were a nail. 10 In a world in which the computer has become the dominant technology –more than 50 billion processors worldwide are doing their job – everything  is becoming a material or conceptual database. Databases have become the dominant cultural form of the computer age, as “cinema was the key cultural form of the twentieth century”. 11

They are ‘ontological machines’ that shape both our world and our worldview. In the age of digital recombination, everything – nature and culture alike – becomes an object for manipulation. The almost unlimited number of combinations that databases offer would seem to prescribe some form of limitation imposed on the possibilities. In the case of open, database-mediated design, this calls for a new role for the designer. The designer should not give up his role as a designer (or restrict himself to his traditional role as designer of material or immaterial objects).

Instead, he should become a metadesigner who designs a multidimensional design space that provides a user-friendly interface, enabling the user to become a co-designer, even when this user has no designer experience or no time to gain such experience through trial and error.

Designing Models

The task of the metadesigner is to create a pathway through design space, to combine the building blocks into a meaningful design. In this respect, the meta-designer resembles the scientist who no longer creates a linear argument, but a model or simulation that enables the user to explore and analyse a specific domain of reality, or a game designer who designs a game space that facilitates meaningful and enjoyable play, if he is successful.

The Tower of Babel

This implies that the designer’s task is to limit the virtually unlimited combinational space in order to create order from disorder. After all, like the infinite hexagonal rooms in the Library of Babel postulated by Jorge Luis Borges 12 , most of the (re)combinations of design elements will have little or no value. To some extent, the designer will create these design elements himself, while others will be added by the co-designer. The recombination of the elements will also take the form of an interaction between the possible paths within the design space on the one hand, and the choices of the co-designer on the other. Of course, data mining and profiling algorithms will also play a role by suggesting or autonomously adding design elements (depending on the metadesign). You might ask yourselves what makes the metadesign presented here essentially different from forms of mass customization that already exist, for example on the Nike website. The answer is that mass customization is part of the project of metadesign, but only part. In the main article I referred to the three dimensions of open design.

In the case of mass customization, as with Nike, the aspect related to openness only exists in the output dimension, and even there the openness is rather limited: a customer can choose from a small range of available colours. It would naturally be impossible to offer a detailed blueprint or road map for exactly what metadesigns  will look like; this discussion is merely my reflections on the topic – or perhaps my considerations of a development yet to come. Creating them will be the task of the meta-designers of the future.

Designability

Some time ago, Kevin Kelly published an article called ‘Better Than Free’ 13 which advocated a new business model, based on free copies in almost every domain – from music, books and films to your DNA – which should be supplemented by added value. He lists eight ‘generative values’ that might enhance the value of the free copies, and for which people will be prepared to pay: immediacy, personalization, interpretation, authenticity, accessibility, embodiment, patronage, and findability. I think we should add one more value: designability. It is my belief that this value will encompass all the others, presenting a great challenge for the meta-designer.

  1. link:  http://www.picnicnetwork.org/program/sessions/redesigning-design.html , accessed on 16 January 2011.
  2. In this article, for brevity’s sake, I use the term ‘open design’ as a catch-all to cover open source design, downloadable design and distributed design.
  3. Plessner, H, ‘Die Stufen des Organischen und der Mensch. Einleitung in die Philosophische Anthropologie’, in Gesammelte Schriften, Vol. IV. Frankfurt: Suhrkamp, 1975 (1928), p. 310.
  4. link: en.wikipedia.org/wiki/Openness , accessed on 16 January 2011.
  5. link:  http://opendino.wordpress.com
  6. Oosterling, H, ‘Dasein as Design’. Premsela Lecture 2009, p. 15. Available online at www.premsela.org/sbeos/doc/file.php?nid=1673 , accessed 16 January 2011.
  7. Available online at www.we-magazine.net/we-volume-02/the-emergence-of-open-design-and-open-manufacturing/ , accessed 16 January 2011.
  8. Lanier, J, You Are Not a Gadget. Knopf, 2010. More information at www.jaronlanier.com/gadgetwebresources.html .
  9. Lanier, J, ‘One-Half of a Manifesto’, on the Edge Foundation’s forum. Available online at www.edge.org/3rd_culture/lanier/lanier_p1.html , accessed 16 January 2011.
  10. Maslow, A, The Psychology of Science: A Reconnaissance. 1966, 2002. Available online at books.google.com/books?id=3_40fK8PW6QC , accessed 16 January 2011.
  11. Manovich, L, The Language of New Media. MIT Press: Boston, 2002, p. 82. Available online at books.google.com/books?id=7m1GhPKuN3cC , accessed 17 January 2011.
  12. Borges, L, ‘The Library of Babel’, reprinted in The Total Library: Non-Fiction 1922-1986. The Penguin Press, London, 2000, p. 214-216. Translated by Eliot Weinberger.
  13. Kelly, K, Better Than Free, 2008. Available online at www.kk.org/thetechnium/archives/2008/01/better_than_fre.php , accessed on 16 January 2011.
]]>
http://opendesignnow.org/index.php/article/redesigning-design-jos-de-mul/feed/ 0
Events http://opendesignnow.org/index.php/visual_index/events/ http://opendesignnow.org/index.php/visual_index/events/#comments Thu, 26 May 2011 11:22:23 +0000 remko http://opendesignnow.org/?p=296 Continue reading ]]> The more time we spend online, the more time we want to share face to face. Communication intensifies because of technology and we intensify communication because we are intensified. Modes of presentation change, since a growing amount of culture is hands- on and process-oriented. We therefore need more festivities and festivals to celebrate collaborative and open design. We used to go to exhibitions and concerts, but since we are the exhibition ourselves, as we are the performers, different get-togethers pop up faster, in ever-changing format and line-up.

CONGRESS OF THE BIGGEST EUROPEAN HACKER ASSOCIATION


CHAOS COMPUTER CLUB ➝ CCC.DE

NOTORIOUS FESTIVAL OPEN TO INNOVATION IN CULTURE ➝ REDESIGNING DESIGN / JOS DE MUL


ARTWORK FOR PICNIC ‘10 ➝ DESIGN BY MARTINE EYZENGA, MARCEL KAMPMAN, WWW.KAMPMAN.NL , PICNICNETWORKS.ORG

HAR ‘09: LAUNCH OF (UN)LIMITED DESIGN CONTEST ➝ THE BEGINNING OF A BEGINNING OF THE BEGINNING OF A TREND / PETER TROXLER


LOGO HACKIN AT RANDOM ➝ DESIGN BY HELEEN KLOPPER➝ HAR2009.ORG

GUZMAN, LOGO OF ROBÖXOTICA, EVENT FOR COCKTAIL ROBOTS ➝ INTRODUCTION / MARLEEN STIKKER


ORIGINAL DRAWING LOGO BY RICHARD WIENTZEK ➝ WWW.ROBOEXOTICA.ORG

THE ANNUAL GATHERING OF THE FAB LAB COMMUNITY ➝ LIBRARIES OF THE PEER PRODUCTION ERA / PETER TROXLER


PHOTO AND DESIGN: FIONA VAN DER GEIJN, ‘FAB 6 BAG’ ➝ FAB6.NL

(UN)LIMITED DUTCH DESIGN AT DMY MAKERLAB, BERLIN


ARTWORK (UN)LIMITED DUTCH DESIGN BY ERIK NAP

GENERATIVE POSTER DESIGN FOR MAKE ART, FRANCE


MAKE ART ➝ MAKEART.GOTO10.ORG/2010/?PAGE=POSTERS

EVERYWHERE AND ALL THE TIME: MAKER FAIRES


MAKE ➝ WWW.MAKERFAIRE.COM

OPEN DESIGN CITY MARKET: CREATIVITY AND INVENTIVENESS RUN WILD


PHOTO: CHRISTOPHER DOERING, JAY COUSINS, AND DANIELA MARZAVAN, OF OPEN DESIGN CITY, BERLIN

EXPLORING OPEN DESIGN FOR A BELGIAN EXPOSITION ➝ DO IT WITH DROOG / ROEL KLAASSEN, PETER TROXLER


ARTWORK: INTRASTRUCTURES.NET

EXHIBITING DESIGN IN A POST-INDUSTRIAL ERA ➝ ORCHESTRAL MANOEUVRES IN DESIGN / PAUL ATKINSON


EXHIBITION CURATED BY PAUL ATKINSON, FOR HUB: NATIONAL CENTRE FOR CRAFT & DESIGN

]]>
http://opendesignnow.org/index.php/visual_index/events/feed/ 794