Open Design Now » grassroots invention http://opendesignnow.org Why design cannot remain exclusive Thu, 13 Dec 2012 09:32:59 +0000 en hourly 1 http://wordpress.org/?v=3.3.1 CRITICAL MAKING / MATT RATTO http://opendesignnow.org/index.php/article/critical-making-matt-ratto/ http://opendesignnow.org/index.php/article/critical-making-matt-ratto/#comments Fri, 27 May 2011 09:17:14 +0000 remko http://opendesignnow.org/?p=434 Continue reading ]]> Open design can be employed to develop a critical perspective on the current institutions, practices and norms of society, and to reconnect materiality and morality. Matt Ratto introduces ‘critical making’ as processes of material and conceptual exploration and creation of novel understandings by the makers themselves, and he illustrates these processes with examples from teaching and research.

Matt Ratto

As noted by other authors in this collection, open design practices, communities, and technologies signal shifting relations in the world of design – between experts and novices, between proprietary and open access to information, and between producers and consumers of media and technologies – to name just a few.  TREND: NETWORK SOCIETY

In addition to these more obvious shifts, open design also encourages an increasingly critical perspective on the current institutions, practices and norms of technologically mediated society. Open design, particularly in regards to digital hardware and software heralds new possibilities for artists, scholars and interested citizens to engage more fully in a simultaneously conceptual and material critique of technologies and information systems in society. Rather than just bemoaning the restrictions placed on users by institutionalized technological systems, engaged makers have the increasing ability and opportunity to constitute and construct alternatives. Such alternatives do not always replace the existing systems, nor are they often intended to. Instead, these material interventions provide insubstantiations of how the relationship between society and technology might be otherwise constructed. Again, this is particularly true for complex hardware and software solutions  OPEN EVERYTHING that have traditionally been seen to require proprietary and closed development in order to ensure success.

Commons-based Peer Production

For example, the many open hardware and software cell phone projects, such as the tuxPhone project started in 2005, provided conceptual and material guidance for the increasingly open development of cell phone operating systems and applications. If nothing else, such projects demonstrated the institutional and legal hindrances to such open developments, revealing that the problems in creating open alternatives were not just technical in character. WYS ≠ WYG While the technical processes and results of projects like tuxPhone provided various kinds of guidance as to future handheld projects and the availability of open hardware alternatives, another important result of this project involved increasing the visibility of the institutional, organizational and legal arrangements that linked cell phone hardware and handset manufacturers to the telephony service providers – arrangements that made opening up the application and operating system development environments tricky at best. In point of fact, it ultimately took market leaders with a lot of pull – Apple and Google – to begin to untie the closely coupled linkages between cell phone applications, operating systems, hardware, and service agreements, and, in doing so, provide transformative competition in the cell phone market.  ARCHITECTURE Both Apple and Google have done so in very different ways and for their own ends. However, Apple and Google’s process and the technical and social choices that they have made are differently open and understood differently by those designers and makers who followed the open cell phone projects, compared to those who did not experience the open cell phone developments as they unfolded.

Open design heralds new possibilities for artists, scholars and interested citizens to engage in a simultaneously conceptual and material critique of technologies and information systems in society.

Yochai Benkler, writing about open source and open content development initiatives, has described these communities and practices as ‘commons-based peer production’ 1 – a somewhat more inclusive term than the narrower ‘user-generated content’ that is currently in vogue.  DOWNLOADABLE DESIGN One claim he makes is that these practices can result in different products and services than those currently produced through proprietary market forces. For Benkler, commons-based peer production can result in more than just open but substantively similar products and services. Instead, these practices can produce entirely novel results – and more importantly, they can serve audiences and needs that are under-addressed by the marketplace.

The above example demonstrates that open design potentially provides more than just another way of designing and creating novel products and services. Instead, and I repeat the word ‘potentially’ here, open design, when embedded in practices of socio-technical reflection and critique, provides the possibility for truly innovative thinking and making, the result of which is not just more of the same, but includes novel and more comprehensive understandings as to the relationships between social life and technical work. In our own scholarship and teaching, we call such potentials ‘critical making’.

Critical Making

The term ‘critical making’ is intended to highlight the interwoven material and conceptual work that making involves. As a teaching and research strategy, critical making shares an emphasis on ‘values’ with both critical design and other critical practices – such as the critical technical practice 2 from which it derives, as well as value-sensitive design 3 and values-in-design. 4 I take the exploration of values in society and their implementation and concretization within technical artefacts as my starting point, choosing to explore these through a series of processes that attempt to connect humanistic practices of conceptual and scholarly exploration to design methodologies including storyboarding, brainstorming and bodystorming, and prototyping.

I call this work ‘critical making’ in order to highlight the reconnection of two modes of engagement with the world that are typically held separate: critical thinking, traditionally understood as conceptually and linguistically based, and physical ‘making’, goal-based material work. I see this as a necessary integration for a variety of reasons: first, as a way of overcoming the ‘brittle’ and overly structural sense of technologies that often exists in critical social science literature; second, as a way of creating shared experiences with technologies that provide joint resources for transforming the socio-technical imagination; and third, as a site for overcoming problematic disciplinary divides within technoscience.

While similar in practice to critical design and the other perspectives listed above, critical making has somewhat adjacent goals. As defined by Tony Dunne:

Critical design is related to haute couture, concept cars, design propaganda, and visions of the future, but its purpose is not to present the dreams of industry, attract new business, anticipate new trends or test the market. Its purpose is to stimulate discussion and debate amongst designers, industry and the public about the aesthetic quality of our electronically mediated existence.5

Critical making, on the other hand, is less about the aesthetics  AESTHETICS: 2D and politics of design work, and focuses instead on making practices themselves as processes of material and conceptual exploration. The ultimate goal of critical making experiences is not the evocative or pedagogical object intended to be experienced by others, but rather the creation of novel understandings by the makers themselves. Neither objects nor services are the currency of critical making. For me, it is the making experience that must be shared. Therefore, critical making is dependent on open design technologies and processes that allow the distribution and sharing of technical work and its results.  BLUEPRINTS In this way, critical making relies on a constructionist 6 methodology that emphasizes the materiality of knowledge making and sharing. The ‘objects’ of critical making are intended to be shared making experiences, curated through both material and textual instructions. Such curated ‘making experiences’ have long been the domain of technical and scientific education; any toy store can provide myriad examples, and electronic ‘kits’ are currently experiencing a renewed enthusiasm.  DIY What differentiates critical making is its attention to the interwoven social and technical aspects of modern life – what theorists call the socio-technical 7 – rather than being primarily about technical expertise or functional knowledge about the natural world.

These are fine-edged distinctions and might cause some readers to wonder why it is necessary to define yet another term for yet another design-based methodology. In point of fact, much of the ongoing scholarly and technical work associated with critical making was initiated by discomfort around the dissonance of the term – why in fact does ‘critical thinking’ seem such a common-sense term, while ‘critical making’ seems odd to most of us? I believe this stems from a continuing separation in Western society between ‘thinking’, which is understood as happening primarily in the mind or at most through the mediation of language, and ‘making’, which is understood as an a-conceptual, a-linguistic, and habitual form of interaction with the world.

Makers – and that involves most of us in one way or another – understand the fallacy of this position. The phrase ‘critical making’ is therefore intended to signal a deep research commitment to the co-constructed nature of our socio-technical world.

Critical Making Lab and Method

The Critical Making Lab at the University of Toronto is sponsored by the Faculty of Information, and by the Canada Foundation for Innovation and the Social Sciences and Humanities Research Council. It was established as a research, teaching and infrastructure project. Our main focus is the material semiotics of digital information. 8 AESTHETICS: 3D In the lab, we explore how addressing information as both symbolic and material object reveals intriguing connections and contradictions in the role of information in individual, cultural and institutional practice. We work to unpack the complexity of information through critical making experiences that link conceptual and physical exploration. These experiences may be curated for pedagogical or for research purposes, but each tends to consist of the following interactive and non-linear steps: a comprehensive review of existing scholarly literature on a socio-technical topic; the development of a metaphorically connected making experience, typically using the ‘kit’ form; the definition of instructions to assist participants in making a technical artefact as well as following a conceptual argument; holding a workshop with stakeholders using the kit and instructions; recording and analysing the results.

Critical Making Teaching

The first critical making course was held at the Faculty of Information in 2008. In the winter of this year, we taught a master’s level course that used making to explore critical information issues such as intellectual property, privacy, questions of embodiment, and so forth. In this course, we made use of the Arduino software and hardware development environment due to its open source nature and its active and supportive artist and designer communities. We explicitly chose to use a physical computing platform rather than a mainly software-based development for two initial reasons. First, the material, hands-on nature of the Arduino called attention to the physicality of information, an important aspect of our teaching and research goals. When working in the primarily textual world of software development, it is less obvious that material work is going on. The Arduino makes such work part of the development process, and the ‘push-back’ of the physical electronics – the resistance of reality to our attempts to contain it – is therefore more present. Second, the movement to the material world often seems to be accompanied by a less functionalist, more emotional and embodied reaction to the topics under construction/discussion. Together, the ‘push-back’ of the material and the embodied and affectual nature of students’ responses to it can engender a more invested and involved participant. These aspects of ‘constructionist’ pedagogy have been previously noted by science and mathematics educators. 9

However, a third reason to use more material forms of development emerged during initial experiences. The ‘making material’ of digital interactions and experiences soon turned out to be an evocative strategy for unpacking the social and technical dimensions of information technologies. For example, one assignment given to the students was to build a ‘physical rights management’ (PRM) system, a digital system that managed physical objects in similar ways to how digital rights management systems manage digital resources. We had initially devised this assignment simply as a way of ‘de-normalizing’ DRM practices by changing their context and making them unfamiliar – a sort of surrealist move of de-familiarization. The students took us at our word, looked closely at how DRM systems controlled digital resources and created often dramatic analogues (literally) of such control mechanisms.

For instance, one group of students built a model of a photocopy machine that used RFID cards to set permissions on the physical copying of books and journals. If these permissions were not followed, the system would automatically send a message to the appropriate (imaginary) authorities and display a message to the photocopy machine user to stay where they were until the police arrived. In the following year, students constructed an alternative PRM system, one that placed the control mechanism in the book itself. In this version, the books used a light sensor to detect when they were being photo-copied. If permissions on copying were breached, the book would ‘self-destruct’ by popping a balloon containing ink.  GRASSROOTS INVENTION

The ultimate goal of critical making experiences is not the evocative or pedagogical object intended to be experienced by others, but rather the creation of novel understandings by the makers themselves.

The absurdity of these modes of control was not lost on the students, who explicitly designed and built their systems based on an analysis of equally absurd methods that they had picked out from existing DRM systems.  KNOWLEDGE Following this assignment, students remarked that previously they had understood in an abstract way how DRM influenced the use and creation of media. However, by constructing their own PRM system and having to make decisions about how it might function, they not only felt that they increased their knowledge, but they also became more invested and in a sense responsible for the adoption and use of DRM. In previous work on critical making, we have called this the movement from ‘caring about’ an issue to ‘caring for’ an issue. 10

The course has since been taught in 2009 and will be taught again in 2010. However, teaching a course which is simultaneously technical, social, conceptual and material is not an easy task, particularly when that course is located within a social sciences faculty rather than one of design or engineering. Such faculties are not set up to handle simple requirements such as sinks in classrooms, or ventilation for soldering irons. The material nature of critical making as pedagogy is demonstrative of why such methods are not more integrated outside of traditional disciplines. However, open design tools and processes provide some of the infrastructure necessary to do this work.

Critical Making Research

In addition to the pedagogical goals outlined above, we are also engaged in critical making as a research strategy. This typically involves curating critical making experiences in order to engender insight and perspective on socio-technical phenomena for stakeholders and other participants. Here we draw upon ethnographically informed research methodologies such as action research 11 and more explicitly on the methods and perspectives associated with cultural probes. 12 Past research that we have undertaken using critical making has addressed the role of materiality in social research 13 and current projects address the socio-technical implications of bio-sensors and the labour and organizational dimensions of digital desktop fabrication. As in the teaching strategies described above, open design tools and processes are essential to the development of critical making as research.

Conclusion and Future Work

Critical making is an intensely trans-disciplinary process, one that requires research skills from humanities and social science disciplines and a familiarity with a wide range of scholarly literatures. At the same time, critical making requires some technical expertise on the part of the researcher, who must curate a technical experience for participants with little or no technical background.  AMATEURISSIMO

As a teaching and a research method, critical making is thus dependent on open design methods, tools and communities. To put it most simply, the expertise necessary to create prototypes and engage in processes of software and hardware construction must be open and available in order to allow for the kinds of critically engaged practices described above. Note that this is not about replacing or reproducing designers or design expertise. ‘Critical makers’ (understood broadly) emerge from a variety of disciplinary contexts and only some of them are interested or engaged in the kinds of tasks associated with design.

Equally, critical making requires institutional resources such as space, equipment and access to expertise that is not typical of the humanities or social sciences. We have been lucky to be located in a supportive faculty, university and funding context that is interested in methodological innovation and in trans-disciplinary research. However, problems still arise, with critical making being seen as either too technical for humanities and social science researchers and students, or, on the other hand, as not being technical enough for the development of novel technological skills and products. Open design methods and tools provide some guidance and support in this regard, but more work is necessary to establish making as an intrinsic part of social research.

Ultimately, we see the integration of socio-technical critique and material making as a necessary part of what Latour has called the development of a ‘cautious Prometheus’. 14 In his keynote address to the Design History Society, Latour lays out a model for acknowledging the interconnectedness of semiotic and material life. He also details design’s role in helping us move from considering material things as given, natural and uncontested objects, e.g. ‘matters of fact’, to thinking of them as being intrinsically political, contentious and open to discussion and debate. He also acknowledges the necessity of this transition for political and ecological reasons, but notes that this move is far from over. Latour raises the issue:

How can we draw together matters of concern so as to offer to political disputes an overview, or at least a view, of the difficulties that will entangle us every time we must modify the practical details of our material existence? 15

Open design is a necessary part of this development, but not just because it democratizes or ‘opens’ design to the masses. Rather than replacing professional design expertise and skill, our sense is that by encouraging and supporting design methodologies for non-traditional design ends – such as the socio-technical critique that is the main goal of critical making – open design helps bring about a kind of socio-technical literacy that is necessary to reconnect materiality and morality. This, ultimately, may be the most important consequence of open design.

  1. Benkler, Y, ‘Freedom in the Commons: Towards a Political Economy of Information’, Duke Law Journal, 52(6), 2003, p. 1245–1277.
  2. Agre, P, ‘Toward a Critical Technical Practice: Lessons Learned in Trying to Reform AI’, in Bowker, G, Gasser, L, Star, L and Turner, B, eds, Bridging the Great Divide: Social Science, Technical Systems, and Cooperative Work. Erlbaum, 1997. Dourish, P, Finlay, J, Sengers, P, & Wright, P, ‘Reflective HCI: Towards a critical technical practice’, in CHI’04 extended abstracts on Human factors in computing systems, 2004, p. 1727–1728.
  3. Friedman, B, ‘Value-sensitive design’, interactions, 3(6), p.16-23. DOI:10.1145/242485.242493.
  4. Flanagan, M, Howe, D, & Nissenbaum, H, Embodying Values in Technology: Theory and Practice. 2005 (draft).
  5. Dunne, A, & Raby, F, Design Noir: The Secret Life of Electronic Objects. Birkhäuser Basel, 2001.
  6. Papert, S, Mindstorms: Children, Computers, and Powerful Ideas (2nd ed.). Basic Books, 1993.
  7. Law, J, After method: mess in social science research. Routledge, 2004.
  8. Haraway, D, Simians, Cyborgs, and Women: The Reinvention of Nature (1st ed.). Routledge, 1990. Hayles, N, ‘The Materiality of Informatics’, Configurations, 1(1), 1993, p. 147-170. Hayles, N, How we became posthuman: virtual bodies in cybernetics, literature, and informatics. University of Chicago Press, 1999. Kirschenbaum, M, Mechanisms: New Media and the Forensic Imagination. The MIT Press, 2008.
  9. Lamberty, K, ‘Designing, playing, and learning: sustaining student engagement with a constructionist design tool for craft and math’, in Proceedings of the 6th international conference on Learning sciences, 2004, p. 652.
    Lamberty, K, ‘Creating mathematical artifacts: extending children’s engagement with math beyond the classroom’, in Proceedings of the 7th international conference on Interaction design and children, 2008 p. 226–233.
  10. Ratto, M, ‘Critical Making: conceptual and material studies in technology and social life’, paper for Hybrid Design Practice workshop, Ubicomp 2009, Orlando, Florida.
  11. Lewin, K, ‘Action research and minority problems’, J Soc. Issues 2(4), 1946, p. 34-46. Argyris, C, Putnam, R, & Smith, D, Action Science: Concepts, methods and skills for research and intervention. San Francisco: Jossey-Bass, 1985.
  12. Gaver, B, Dunne, T, & Pacenti, E, ‘Design: Cultural probes’, interactions, 6(1), p. 21-29. DOI:10.1145/291224.291235.
  13. Ratto, M, Hockema, S, ‘Flwr Pwr: Tending the Walled Garden’, in Dekker, A & Wolfsberger A (eds) Walled Garden, Virtueel Platform, The Netherlands, 2009.Ratto, op.cit.
  14. Latour, B, ‘A Cautious Prometheus? A Few Steps toward a Philosophy of Design’, Keynote lecture for the Networks of Design* meeting of the Design History Society, Falmouth, Cornwall, 3rd September 2008.
  15. Idem (p.12).
]]>
http://opendesignnow.org/index.php/article/critical-making-matt-ratto/feed/ 968
DO IT WITH DROOG / ROEL KLAASSEN, PETER TROXLER http://opendesignnow.org/index.php/article/do-it-with-droog-roel-klaassen-peter-troxler/ http://opendesignnow.org/index.php/article/do-it-with-droog-roel-klaassen-peter-troxler/#comments Fri, 27 May 2011 08:40:09 +0000 remko http://opendesignnow.org/?p=419 Continue reading ]]> Renny Ramakers talks about Droog’s latest project Downloadable Design, about making money, designing for the masses, the development of the design profession, and Droog Design’s recent experiments and research in sustainability, local production, co-creation, upcycling and collective revitalization of the suburbs.

Roel Kaassen Peter Troxler

Roel Klaassen: Looking at recent and future developments in design in the Netherlands, Droog has played an important part, perhaps even a key role. One of your latest projects is about design that can be downloaded. Are you giving your designs to users so they can modify them?

Renny Ramakers: We started the Downloadable Design DOWNLOADABLE DESIGN project together with Waag Society because we saw that designers these days make products that could be downloaded very easily, but aren’t available for download. Take Jurgen Bey’s design for our store in New York, for example. Even though it’s based completely on laser cutting, it is constructed from so many parts and its assembly involves so much manual labour that it is not possible at this stage to offer it as a downloadable design.

We’ve seen the idea of flat-pack products that you assemble yourself, and are seeing the growth of the 3D printer,  PRINTING which can now be used to create physical objects from various designs. These concepts looked interesting, so we thought: let’s see if we can build a platform for these kinds of designs. Together with early internet pioneer Michiel Frackers and designer Joris Laarman, we are now working on the realization of this platform, which will be released as Make-Me.com.

We set up the project with the aim of achieving a number of goals. First, we wanted to eliminate some of the many steps between design and production, so the products become cheaper, similar in a sense to what IKEA has done. Compressing the process is an important reason. We know from our experience with producing designs that it may take up to two years before a finished product reaches the shops. Two years is a tremendously long time, so it’s interesting to explore whether designers would be able to design products without this second part of the process. It could be a very interesting development. Second, if you produce locally, you cut down on the need for transport. Reducing transport adds an ecological benefit. Third, local production on demand means that you don’t need to have your products in stock. This constitutes an economic advantage. From the consumer’s perspective, providing everybody access to design products also has value. Design is everywhere: even the most inane magazines feature design. However, a high level of design isn’t available to most end users; our products are just too expensive for the people who read those magazines. As a result, people end up going to stores like IKEA. We think that Downloadable Design will make it possible for us to bring our products within reach for people who would not otherwise be able to afford them. All these end users would have to do is assemble the product themselves.

Take Jurgen Bey’s design for our store. Even though it’s based on laser cutting, it is constructed from so many parts and its assembly involves so much manual labour that it is not possible at this stage to offer it as a downloadable design.

This leads me to another aspect: do it yourself, or DIY.  DIY There are countless DIY shows on TV; DIY is everywhere. So we thought: what if we not only made design products cheaper, but also introduced more variety. How many times have you found almost the perfect table, but it’s only 80 cm wide and you need a table that’s 90 cm or 120 cm wide to fit in your living room? In so many cases, your house is too small or too big for the standard sizes. What if you could adapt all these measurements to suit your space? That would be hugely practical, much more functional. Or you could choose your own colour, to make it your own thing. Downloadable design is also a form of co-creation.  CO-CREATION

Challenging the creativity of designers is yet another reason, and a very important one. Designers have to adapt their design process to the platform. They have to figure out which parameters of the product can vary, while still earning a profit. What we did here was not just to ask the designers to design a product and have the consumer choose a colour or a pattern; that’s already been done. We asked them to be creative and think of completely different ways for consumers to interact with the design. We also challenged designers to consider how they would make money on their design. We asked them to be creative in what they would offer for free and what they could be offering for an added fee. What if there could be layers in a design? For example, a product could be more expensive if it bears the designer’s signature. The business model requires creativity, too, and it is the most challenging part. As I said, we were inspired by laser cutting and digital technology, but our focus is not limited to digital technology; we also want to revitalize craftsmanship.

We plan to set up a whole network of small studios for highly skilled crafts; as I’ve discovered, it is not easy for small-scale workshops to survive. This network of craftspeople is as important to us as the 3D printers and laser cutters. The emphasis on craftsmanship is crucial, particularly since Ponoko and Shapeways are already offering 3D printing and laser-cut products. AESTHETICS: 2D I think that including crafts gives us a distinctive edge. It also facilitates cross-pollination by introducing digital technology into crafts workshops and vice versa. Finally, using local materials is also important to us; local sourcing is a high priority.

Let me zoom in on making money. Designers have to come up with new business models. Do you have ideas or examples from your experience with the Downloadable Design platform?

At this stage, the designers are not there yet; they are just getting started. One designer came up with an interesting suggestion: as you download a product, say a chair, you receive more and more pixels. If people could stop a download half-way, they could get the design for free, but it would be incomplete or low-resolution. If they decide to download the whole product, they would have to pay for the privilege.
Another idea was to offer an interior design service, so customers could have their interiors custom-made to suit their individual needs, based on variable designs that would be available on the platform. They would pay for the customization rather than for the products. Rather than buying a ready-made cupboard, they would pay to have the basic design adapted to their individual requirements.  MASS CUSTOMIZATION

In so many cases, your house is too small or too big for the standard sizes. What if you could adapt all these measurements to suit your space?

I asked the designers to think of different stages, different levels or different services; to think of a way to create a need for their services. While this is the most obvious idea, it’s not easy for a designer to conceive a product that generates demand for a service. It’s easy to do that with something like a phone, which comes with software, but it becomes a real challenge when you’re working with purely physical products. But there is another difficulty: customers have to get used to customization. Take the example of Blueprint, a physical blueprint of a home — or rather parts of a home — in blue Styrofoam which Jurgen Bey designed the Droog shop in New York. The idea was that people would buy the products but could specify the materials to their own liking. There’s a display model of a complete fireplace in blue foam, with a chimney and everything. If somebody wants to have this fireplace in their home, they could have it that shape done in tiles or bricks. But people don’t dare to buy it like that; they first want to see it for real, as a tangible object. They want to know what material it is made of, what it looks like, how it feels. We’ve learned that a project like that could only work if you produced an actual, physical specimen and offered that for sale.

Similarly, people don’t want to make all their clothes by hand themselves; they want to try the garments on in the shop to see how they’ll look. We’ve also discussed whether we would want to offer a separate category of designs: to expand what we offer, not only for download but also for sale. But what would be the point of a platform for downloadable design if you also have a web shop? Not having a standard web shop is one of the important reasons why I’m working on this project, so we’re not going to have one. However, the fact that this topic keeps cropping up is certainly a sign of things to come.

What do you feel it signifies? Is it just laziness on the part of the consumer?

No, it’s a lack of confidence. Changing the colour of your sneakers at Nike ID is less of an issue.

I’ve done it once; it was quite fun.

But now try doing that for a whole cupboard or bookcase, a design that would become a physical object. Imagine that you could change all the parameters. Not just an option for customization, but a required part of the process. You would have to specify each and every aspect. So the question is, wouldn’t people rather go to a shop and simply buy a cupboard?

It may have to do with lack of confidence. Also, not everyone is an expert in interior design. That’s also why standard furniture exists. Not everyone starts out with an empty floor plan. All those consultants and home decoration centres are there to help people define their interior design preferences. This is a separate issue from the presumed lack of confidence; you could call it ‘assisted design literacy’: how to design your own world.

We would be willing to help people. All these design magazines offer plenty of advice on home decoration, and there does seem to be a demand for it. But then we need to consider the extent to which design can be open. I remember modular furniture in the 60s. People wanted to see examples, too, back in those days; they wanted to see a visual impression of the best way to combine those modules. These are investments that people make. Downloading something that’s purely digital doesn’t cost much.

And if you don’t like it, it’s not a big deal.

But with downloadable design,  DOWNLOADABLE DESIGN people really need to take the next step. It means that they would have to go to a workshop to have the product made, or they would need to make it themselves. You say that it sounds like fun, but I doubt it would be fun for the majority of people out there; they wouldn’t want to take the time. That even holds true for me; I wouldn’t want to do it either. I’ve got other things to do.

This trend, this movement, this development: how does it change the design profession?

Designers have always wanted to work for the general public. in the 1920s and ‘30s, it was products for the masses that they wanted to design. Designers gave directions for how to make things that were good for the masses, and the belief was that the masses needed to be educated. Then, in the 1960s, there was an emancipation of the masses. The re-industrialization led to incredible market segmentation, so the masses had more choices and could buy more. As a result, designers started to follow the preferences of the masses. When the market is saturated, it becomes segmented; it’s a logical progression.

If you download music, You can start listening to it immediately. Design is different; you still need to go somewhere to have it made, or you have to make it yourself.

After that, a counter-movement emerged, as evidenced by Memphis and Alchimia, who got their inspiration from the choices of the masses and used it to design highly exclusive products. The inspiration from the masses has always been there, always. However, design is always a top-down process.

In the 1990s, some designers started to turn away from an overly designed environment; they reached a saturation point. They were interested in the fluidity of form. These designers would initiate a process, then stop the transformation at an interesting point and produce the result. It was presented as a free-form exercise, but it was very much directed by the designers.

New opportunities are emerging from the Internet and from digital fabrication, which means that the masses can start to participate in design.

That seems like a logical next step, at least from your perspective. But when I look at the products showcased on sites like Ponoko and Shapeways, I am concerned that the result will be a huge volume of unattractive and clunky design. This trend will not end well.  AESTHETICS: 2D

You say this as an expert in design?

I say it as a human being. I am worried that this trend will spread like a virus. In my opinion, the internet has brought us a lot of ugly stuff. There have been a lot of beautiful things, too, but a lot of ugly ones. Leaving people to their own devices… I don’t oppose it on principle, but it’s not my thing.

The design world draws inspiration from these developments, but these trends are not all that’s going on. Looking at what’s going on in the design world, the designers we work with and the projects we work on, I see two things happening. On the one hand, there is the open source story, which is about trying to find possibilities for participation; that goal is in line with the principles we espouse.

The other side is a devotion to local sourcing, a type of anti-globalism.  MANIFESTOS Many designers are concerned about the transparency of production processes and would like to see more use of local materials and local sources. That is part of our platform, too, since we want to encourage working with local sources and local workshops. Another important issue at the moment is sustainability, the concept of relying on renewable resources.

Designers are becoming entrepreneurs. By telling them to create their own way to make money, we relate to their sense of entrepreneurship. However, the concept of finding their own innovative ways to earn a profit has not yet been developed. This is a real challenge; they really have to make that mental shift towards entrepreneurial design.

On the one hand, there are designers like Tord Boontje,  DESIGNERS who distributed the design of his chair as a file as early as the 1990s. These digital designs were the start of a growing trend, but the content was static. There wasn’t much you could do with it, other than possibly choosing a different upholstery fabric; the idea was simply to distribute it as-is. It was essentially a predecessor of open design. As a designer today, I can imagine that I would have to get used to deciding what to give away for free and what to keep. I would define the parameters, but to what extent would I really have to relinquish control of my design? It is an interesting dynamic, and designers do need to maintain a creative focus on it.

Another issue that I’ve noticed is that designers do not really believe that consumers would download their designs. If you download music, then you have it and you can start listening to it immediately. Design is different; you still need to go somewhere to have it made, or you have to make it yourself. That’s more onerous.

People are too scared to add their own contribution to a lamp they bought for about 100 euros.

The Downloadable Design platform is a learning process for us, too. We started it as an exploration of a concept, and we want to investigate it thoroughly. It is important for us that the platform is curated, that we have a certain amount of control over what is put on the platform. We are playing around with ideas for allowing people to upload things, but I’m still undecided about whether or not I want to do it. In any case, I would want uploads to be related to the designs being posted by our designers. Maybe people could upload how they made the products they downloaded, so it would remain within the parameters defined by the designer.

Open design as a new way of designing. What does that mean to you?

At Droog, we’ve been doing open design all along, right from the start. Our work has always been connected to projects or events.  EVENTS We’ve always been interested in the interaction with consumers. Consistently, one of the key elements in our work has been that consumers could personalize a design, that our designs had an element of fun, pleasure or interactive co-creation.  CO-CREATION

A very good example is do create, a concept that we realized in collaboration with the KesselsKramer PR agency in 2000. 1 One of the projects was do scratch by Martí Guixé, a lamp that’s covered in black paint. People were supposed to scrape patterns in the paint to create their own drawing. This lamp has been sitting around in the shop for seven, eight years, and nobody has ever bought one. People are too scared to add their own contribution to a lamp they bought for about 100 euros. Even when we added sample drawings that people could copy onto the lamp themselves, nobody would buy it. We only started selling the lamp when we had artists do the drawings. After that experience, we decided not to continue this product. This type of interactive design did not seem to work.

Then, in 2008, we did Urban Play in Amsterdam, which also involved a contribution by Martí Guixé. 2 It was a large cube built from blocks of autoclaved aerated concrete or AAC, a low-density, non-toxic material that can be carved very easily. The idea of this Sculpture Me Point was that everybody could add their own sculpture. Everybody chopped away from day one, but after six weeks the result was deplorable. So we ended up with two questions. A, are people willing to do something? And B, what happens when people actually do it; is the result interesting?

Did you do further research on co-creation involving interaction with users? What did it reveal?

One of the projects that started from the Droog Lab is a digital platform for co-creation invented by Jurgen Bey and Saskia van Drimmelen. That comes fairly close. It is about co-creation,  CO-CREATION but it provides a platform for designers to work with other designers. Jurgen and Saskia moderate participation; only people they find interesting can get involved. It is extremely curated; they decide who gets in, who stays out, and who will be making something together, but they also allow room for people’s individual development. We are also working on a different platform which is about ‘upcycling’ dead stock from producers. The aim here is to make dead stock accessible for designers. It’s got nothing to do with using digital technology; it is about all the material that would otherwise simply be thrown away. In point of fact, most of these discarded products get recycled.  RECYCLING But the point here is that all those designs vanish into thin air. Thousands of shavers just disappear. A designer designed them; a certain amount of development went into them. Costs were incurred, and a lot of energy was spent. That’s another development we’re pursuing: we try to direct design towards re-designing what already exists.

China, for instance, might be coming to the end of its tenure as a cheap manufacturer pretty soon. That’s one of the reasons why we started Downloadable Design: to invent new systems.

Again, this is about the creativity of designers. In some sense, it could be considered co-creation, since a designer is building on something created by another designer. The challenge here is whether it is allowed. Somebody designed it, but now it’s dead stock that the company would rather throw away than have us picking it up and putting designers to work on it. There are very loose links to co-creation, to bottom-up design. More importantly, however, these are all developments that are part of what is happening now. So much more is going on now; the bottom-up part is only a small proportion of it.

You talked earlier about services, mentioning the example of interior design. The interesting thing is that you link the designer to the consumer directly, rather than through a middleman or organization.

That truly is a development that is happening right now. Take the fashion collective Painted, for example; they would love to make products for the user. The designers would prefer to make clothes for real people, not averaged-out stuff in shops; they would much rather make things one-on-one, in direct contact with the user. And I think that this really what’s going on in design at this very moment.

Distribution and the middle links in the production process are issues that IKEA has started addressing. We have first-hand experience with how much energy, money and time it costs. Everyone is trying to invent something to mitigate this problem, be it Downloadable Design or a designer who works directly for the customer. That’s where everybody is looking for solutions at the moment. It has to do with the current system; the whole production chain is starting to fall apart. There are environmental questions, economic questions, questions about production in developing countries. Not long ago, everybody was starting to have their stuff made in developing countries, but people in those countries are starting to earn more. China, for instance, might be coming to the end of its tenure as a cheap manufacturer pretty soon. That’s one of the reasons why we started Downloadable Design: to invent new systems.

Our other answer is a resolution of the dead stock issue. If we develop a system in which products are not thrown away, but instead are ‘upcycled’ and brought back into circulation, then we would not need to use so much new raw material; we could use what we already have. There are a few things that need to happen before people start adopting the concept, but we are interested in exploring systems to see how we could create new incentives for creativity, but also how we could start to fix the ecological and economic problems.
In the Droog Lab we are addressing yet another issue: the problem of globalization.  TREND: GLOBALIZATION You see the same stuff everywhere; you get the same retail chains everywhere; you get shopping malls everywhere. High-rise buildings are springing up all over the place; food travels all over the planet with no consideration of what’s in season. These examples are part of an incredible and very special aspect of globalization that makes people forget where things come from. People start to take everything for granted and lose touch with what is part of their own culture. That’s why we set up this lab, as a system to develop creativity based on local conditions, based on how people live and work. We want to develop creative ideas that come from talking to normal people – a taxi driver, a hair dresser – not graduates from an arts academy.  GRASSROOTS INVENTION This approach allows us to get to the heart of the matter, achieving a comprehensive understanding of how creative ideas are viewed by the end users. The aim is for designers come back with so much inspiration that they are able to develop new ideas in a global context.

We want to develop creative ideas that come from talking to normal people – a taxi driver, a hairdresser – not graduates from an arts academy.

Led by Jurgen and Saskia, the Droog al Arab team came back from the Droog Lab project in Dubai with the idea for a platform for co-creation.  CO-CREATION After seeing all these shopping malls, they have seen how the current system of mass production is a one-way street that leaves consumers in the dark about how things are produced. On their platform, they want to show how things are designed, especially how they are designed collaboratively, and they want to establish contact with customers and producers on that single platform.  MASS CUSTOMIZATION

In another project being done in the suburbs of New York, the team led by Diller, Scofiodio + Renfro wants to bring new life to these emptying satellite towns by turning residents into entrepreneurs. An amateur chef might start a sideline as a restaurant owner, or a person might open an informal library because they have a lot of books. Our designers are not at all interested in downloadables and the like, but they are investigating what happens at that level and developing ways to react to it creatively. At that point, they step back let the residents do their own thing. It’s such a fun project. Imagine going to visit a suburb, and discovering that one house has become a restaurant, another one a library, and another one a café. Imagine that somebody opened a cinema simply because they had a projector. All the fun things are available again, and people don’t have to leave the neighbourhood to find them. It creates a renewed sense of community.

Imagine that somebody opened a cinema simply because they had a projector.

On the one hand, I am fascinated to see what those people are actually going to do. On the other hand, I am interested in how we are blurring the boundaries between public and private; essentially, we are asking people to fulfil a public role in their private home. Accepting that involvement could even have an influence on the architecture of these people’s homes. What will houses look like if suburbs develop in that direction? If everybody, or at least a significant part of the population, becomes entrepreneurs, then their homes will look differently. Their private residence will include a public section.

That’s exactly why I do these things. I always return to the challenge of inventing a system, a method of generating innovation, regardless of how it happens. Downloadable Design, innovating the designer, upcycling dead stock, working within the local context, whatever. For me, these are all parts of the same story, facets of one whole entity. Maybe, two months from now, I will have dreamed up something else, have had yet another idea.

Those are a few of the projects we are running at the moment. All these initiatives are born from the same motivation: a sense of curiosity about the user, and a drive to bring innovation to design in a different way, by developing fresh methods while never forgetting that design is also fun.

]]>
http://opendesignnow.org/index.php/article/do-it-with-droog-roel-klaassen-peter-troxler/feed/ 147
LIBRARIES OF THE PEER PRODUCTION ERA / PETER TROXLER http://opendesignnow.org/index.php/article/libraries-of-the-peer-production-era-peter-troxler/ http://opendesignnow.org/index.php/article/libraries-of-the-peer-production-era-peter-troxler/#comments Fri, 27 May 2011 08:37:00 +0000 remko http://opendesignnow.org/?p=411 Continue reading ]]> Mapping the landscape of commons-based peer production, Peter Troxler analyses the arena of open source hardware and looks into various initiatives being spawned by fabrication labs, trying to identify their business potential and asking how these initiatives contribute to giving people more control over their productivity in self-directed, community-oriented ways.

Peter Troxler

In today’s society, individuals often collaborate in producing cultural content, knowledge, and other information, as well as physical goods. In some cases, these individuals share the results and products, the means, methods and experience gained from this collaboration as a resource for further development; CO-CREATION this phenomenon is referred to as commons-based peer production.

Commons-based peer production is most widely practiced in the area of software development: open source software. The most prominent examples of open source software are the Linux operating system and the Apache web server. Open source is not the exclusive domain of software, however; it has spread into other domains, from culture and education to knowledge discovery  KNOWLEDGE and sharing. Examples include the many people who use Creative Commons licences, CREATIVE COMMONS the Blender movies, VEB Film Leipzig, the countless initiatives in open education, the SETI@home project, Wikipedia, Open Street Map, or Slashdot. Commons-based peer production is generally attributed to digital revolutions: the widespread availability of new, digital information technologies. 1

While its origins can indeed be traced back to digital development, commons-based peer production goes beyond the purely digital domain. A number of open source hardware projects currently aim to produce tangible goods through a peer-production approach, not to mention ‘fabbing’ initiatives (abbreviated from fabrication) that seek to make it possible for anyone to manufacture their own goods.

Perhaps these initiatives are emerging because many “physical activities are becoming so data-centric that the physical aspects are simply executional steps at the end of a chain of digital manipulation”, as Shirky suggests. 2 Then again, perhaps the commons-based peer production model “provides opportunities for virtuous behavior” and so “is more conducive to virtuous individuals”. 3

Yochai Benkler argues that “in the networked information economy – an economy of information, knowledge, and culture that flow through society over a ubiquitous, decentralized network – productivity and growth can be sustained in a pattern that differs fundamentally from the industrial information economy of the twentieth century in two crucial characteristics. First, non-market production (…) can play a much more important role than it could in the physical economy. Second, radically decentralized production and distribution, whether market-based or not, can similarly play a much more important role”. 4 TREND: NETWORK SOCIETY

The business, or rather, the benefits of commons-based peer-production are not uniquely monetary. 5 The rewards include indirect mechanisms, such as the positive effects of learning on future earnings or enhanced reputation, which in turn can lead to future (paid) contracts for consultancy, customization, maintenance or other services. The business also includes what economists call hedonic rewards: not consumption, but the act of creation gives pleasure to the prosumers. Peer recognition is another physiological reward, involving ego gratification. This part of the business is an exchange of production for consumption that does not rely on monetary means.

Open Source Hardware

Since 2006, Philip Torrone and Limor ‘Ladyada’ Fried have been curating Make Magazine’s definitive guide to open source hardware projects MANIFESTOS that started out as a holiday season spending guide to ‘gifts that give back’. 6 Under the heading Million Dollar Baby – probably alluding to the underdog nature of open source hardware – they presented fifteen examples of companies at O’Reilly’s Foo Camp East in May 2010:

Adafruit Industries, makers of educational electronic kits; Arduino, the open source computing platform; Beagle Board, a manufacturer of open development boards for computers; Bug Labs, known for their modular Lego-type computer hardware; Chumby, standalone Internet content viewers; Dangerous Prototypes, Dutch hackers turned entrepreneurs who sell an open source reverse engineering tool; DIY Drones, for open source unmanned aerial vehicles (autopilot drones); Evil Mad Scientist Labs and their fun educational projects; Liquidware, who make Arduino accessories; Makerbot Industries, the company behind MakerBot 3D printers and the sharing platform Thingiverse.com; Maker Shed, the shop behind Make Magazine and Maker Fair; Parallax, education in microcontroller programming and interfacing; Seed Studios, for Chinese Arduino derivatives; Solarbotics, for solar kits, robot kits and BEAM robotics; Spark Fun Electronics, for education and prototyping electronics products.

All these companies are selling open source hardware and creating some kind of community around them. Together, they generate a turnover of about US$ 50m, or so Torrone and Limor estimate. They reckon that there are currently about 200 open source hardware projects of a similar kind. The open source hardware community will reach a turnover of US$ 1b by 2015, according to the forecasts made by Torrone and Limor. Some of these communities have seen exponential growth recently, such as the RepRap community. 7

Kerstin Balka, Christina Raasch and Cornelius Herstatt went to great lengths to collect examples of open source hardware projects through Open-Innovation-Projects.org. In 2009, their database consisted of 106 entries, 76 of which were truly open development of physical products, or open design. Open design as defined on that site is characterized by revealing information on a new design free of charge, with the intention of collaborative development of a single design or a limited number of related designs for market exploitation. Among others, their database includes community projects such as Openmoko, Fab@home, OpenEEG, One Laptop Per Child, SOCIAL DESIGN Mikrokopter, or RepRap.

it is naïve to believe that open source software practices could be copied to and applied in the open design realm without any alteration, ignoring the constraints and opportunities of materiality.

Balka, Raasch and Herstatt used this database of open design projects for statistical studies to identify similarities and differences in open source software projects. 8 They found that, “in open design communities, tangible objects can be developed in very similar fashion to software; one could even say that people treat a design as source code to a physical object and change the object via changing the source”. 9 However, they also find that “open parts strategies in open design are crafted at the component level, rather than the level of the entire design” 10 and that “the degree of openness differs significantly between software and hardware components, in the sense that software is more transparent, accessible, and replicable than hardware”. 11 WYS ≠ WYG Indeed, despite the many academic discussions that support such a view, it is naïve to believe that open source software practices could be copied to and applied in the open design realm without any alteration, ignoring the constraints and opportunities that the materiality of design entails.

Fabbing

Besides these single-aim or single-product projects, there are other initiatives promoting commons-based peer production primarily by sharing designs and encouraging people to ‘make things’. Some are about making things for the fun of it;  GRASSROOTS INVENTION the Maker Faire in the USA, Make Magazine and Craft Magazine are all good examples. Some initiatives are about easy sharing, distribution and promotion, such as Ponoko, Shapeways and Thingiverse. Others involve more serious or more ambitious social experiments, such as the Open Source Ecology with their experimental facility, Factor E Farm. 12

And there are initiatives of commons-based peer production that could be summarized under the heading of ‘shared machine shops’. 13  These initiatives are typically centred around workshops equipped with hand tools and relatively inexpensive fabrication machines (e.g. laser cutters, routers, 3D mills). Users produce two-dimensional and three-dimensional objects that once could have only been made using equipment costing hundreds of thousands of euros. They use digital drawings and open source software to control the machines, and they build electronic circuits and gadgets.

100k-Garages is “a community of workshops with digital fabrication tools for precisely cutting, machining, drilling, or sculpting the parts for your project or product, in all kinds of materials, in a shop or garage near you”. 14 Most of these workshops are located in the USA and Canada (about 180), with five shops in Europe and two in Australia. 100k-Garages are essentially establishing a network of distributed manufacturing shops that produce their users’ designs for a fee. They are providing a professional manufacturing service, rather than offering shop access for makers to make their own things themselves. Through quality of workmanship and standardization of equipment – the network is sponsored by ShopBot Industries, a maker of CNC routers – they are establishing a platform which guarantees the making end of it and frees users to focus on design. Ponoko, one of the preferred sharing platforms, enables further exchange.

TechShop is a group of workshops that are equipped with typical machine shop tools (welding stations, laser cutters, milling machines) and corresponding design software. TechShops are mainly based on the ‘gym model’: a monthly subscription buys users access to tools, machines, design software, and other professional equipment. Courses on how to use the tools are offered, too, for a fee. Located in Menlo Park, San Francisco and San Jose, CA, Raleigh, NC, Portland, OR, and Detroit, MI, they cater to a US-based clientele. 15 Chris Anderson describes them as an “incubator for the atom age”; 16 according to his account, the facilities are mainly used by entrepreneurs who come to a TechShop for prototyping and small batch production. The online member project gallery, however, shows such diverse projects as a 3D scan of an alligator skeleton, custom-made sports equipment, movie props, a laser-cut gauge for bamboo needles, a laser-etched laptop and an infrared heater for an arthritic dog.

Hackerspaces are another venue where peer production takes place, self-defined “as community-operated physical places, where people can meet and work on their projects”. 17 Emerging from the counterculture movement, 18 they are “place[s] where people can learn about technology and science outside the confines of work or school”. 19 Equipment and funding are collective endeavours.

A hackerspace might use a combination of membership contributions, course fees, donations and subsidies to sustain itself. Activities in hackerspaces evolve around computers and technology, and digital or electronic art. Hackerspaces are founded as local initiatives following a common pattern. The Hackerspaces ecosystem comprises several hundred member locations world-wide, of which roughly half are either dormant or under construction. 20 Becoming a hackerspace is essentially a matter of self-declaration – an entry on the hackerspaces.org wiki is sufficient – which lowers the barrier to entry enormously, at least for advanced computer users. However, this low barrier to entry is probably also the reason for the relatively large number of ‘registered’ but dormant hackerspaces. Collaboration  CO-CREATION between Hackerspaces has recently begun in the form of ‘hackathons’; these marathon sessions currently do not seem to extend beyond displaying the activities happening at the spaces taking part. 21

the open source label confers a certain coolness in some circles of a gadget-crazy world.

Fab Lab, short for fabrication laboratory, is another global initiative with a growing number of locations around the world. Fab Labs have a more conceptual foundation, as they emerged from an MIT course entitled ‘How To Make (almost) Anything’. 22 While there is no formal procedure on how to become a Fab Lab, the process is monitored by MIT, and MIT maintains a list of all Fab Labs worldwide. At the moment of writing, the Fab Lab community COMMUNITY comprises about sixty labs, with another fifty to open in the not-too-distant future. There are a few collaborative projects within the community, and a number of initiatives to exchange designs and experience between the labs. Similar to the hackathons, but occurring more regularly and systematically, all the labs around the world can get in contact with each other through a common video conferencing system hosted at the MIT which is used for ad-hoc meetings, scheduled conferences and the delivery of the Fab Academy training programme.

Academic publications note a number of examples of Fab Lab projects. Mikhak and colleagues report on projects in India, at Vigyan Ashram Fab Lab just outside the village of Pabal in Maharashtra, and at the Costa Rica Institute of Technology in San Jose, Costa Rica. The projects in India are about developing controller boards to facilitate more accurate timing of the diesel engines they use to generate electrical power, and developing devices to monitor milk quality not at the collection centres and the processing plants, but at the producer level. The Costa Rican projects revolve around wireless diagnostic modules for agricultural, educational and medical applications, for example monitoring a certain skin condition in a rural village. 23 SOCIAL DESIGN

In FAB: The Coming Revolution on Your Desktop, Neil Gershenfeld lists examples of what students at MIT made in his course on ‘How to Make (almost) Anything’. The list includes a bag that collects and replays screams, a computer interface for parrots that can be controlled by a bird using its beak, a personalized bike frame, a cow-powered generator, an alarm clock that needs to be wrestled with to turn it off, and a defensive dress that protects its wearer’s personal space. 24

Arne Gjengedal reports on the early projects at the Norwegian MIT Fab Lab at Solvik farm in Lyngen. His list includes the ‘electronic shepard’ (sic) project that used telecom equipment  RECYCLING to track sheep in the mountains, the ‘helmet wiper’ for clearing the face shield in the rain, the ‘wideband antenna’ for the industrial, scientific and medical (ISM) radio band, the ‘Internet 0’ project for a low-bandwidth internet protocol, the ‘perfect antenna’, and the ‘local position system’ for positioning of robots in the lab. 25

Diane Pfeiffer describes her own experiments and projects in the context of distributed digital design. Her experiments were Lasercut News, Digital Color Studies & Pixelated Images, Lasercut Screen, and Lasercut Bracelets (which she sold at a local shop); the projects she worked on were Distorted Chair and Asperatus Tile. 26

The Business Promise

All those initiatives represent various aspects of a commons-based peer production ecosystem (non-market or radically decentralized production) or are at least contributing to the emergence of such an ecosystem.

Torrone and Fried have shown how a regular and sizeable market has grown around open source hardware. Those open source hardware businesses clearly operate under market conditions and their production is not radically decentralized. Indeed, Torrone and Fried’s agenda might even be said to ‘prove’ that open source hardware results in marketable products. Evidently, the open source label confers a certain coolness in some circles of a gadget-crazy world.  OPEN EVERYTHING

Yet many of these open source hardware components – Arduino and MakerBot being the most prominent examples – are providing open source ingredients to a peer production ecosystem at a price that outweighs the pain of sourcing all the parts, having to deal with manual assembly, or facing issues of incompatibility. As components, they can become building blocks of higher-order machines. In that sense, they function as a platform for open source development. As far as the components themselves are concerned, they are open source in the sense that their internal structure and functioning are made transparent and potentially modifiable.  BLUEPRINTS

As flat-packed, self-assembly, open source machines, they are the choice of many peer-producers and form an important basis for highly decentralized – and highly customized – production. It becomes possible to own machines at the price of building them rather than the price of buying them pre-assembled. DOWNLOADABLE DESIGN And their open source nature makes it easier to adapt them to specific requirements or even repurpose them in novel ways.

Rather than commoditizing ingredients, 100k-Garages commoditize one part of the making process: the cutting. If there is a dense enough network of such facilities in any particular region, this makes a certain practical sense in terms of efficiency and safety, given the somewhat demanding fabrication process of a ShopBot CNC router as compared to a laser cutter. However, it establishes a division of labour, and it deprives user-clients from accessing potential learning experiences and therefore potentially contributing to a more general commons. The result is that the ShopBot remains a commons apart, and somewhat closed at that.

TechShops, Hackerspaces and Fab Labs are all providing facilities and knowledge as part or rather as a basis of a commons. The environment in which TechShops operate is strictly commercial. Peer production might happen by accident, but there seem to be no incentives to support it. As an ‘incubator for the atomic age’, they remain safely in the market arena, yet they are effectively creating opportunities for decentralized prototyping and production.

In contrast, Hackerspaces live up to their name, definition and history by building on non-market, sometimes even anti-market  MANIFESTOS commons-based principles. Their core focus is doing personal and collective projects. And Hackerspaces are far from exclusive; they frequently include casual users who might spend a lot of time in hackerspaces. Nick Farr even speculates that those casual users are “perhaps making more significant contributions than regular members, but decline to officially join for many different reasons.” 27

The Fab Labs’ commitment to a commons is clear from how they are structured. Fab Labs subscribe to a charter which, among other things, stipulates open access, establishes peer learning as a core feature and requires that “designs and processes developed in fab labs must remain available for individual use”. In the same clause, however, the charter also allows for intellectual property to be protected “however you choose”. Underlining this point, it explicitly continues that “commercial activities can be incubated in fab labs”, while cautioning against potential conflict with open access, and encouraging business activity to grow beyond the lab and to give back to the inventors, labs, and networks that contributed to their success. 28 Fab Labs incorporate an interesting mix of characteristics that might seem contradictory at first, but might well be considered the best practical approximation of Benkler’s networked information economy.  TREND: NETWORK SOCIETY


‘Libraries’ of the Peer Production Era

The fabbing universe could be described on two dimensions, characterizing initiatives as more reproductive or more generative in their nature, and as more infrastructure-oriented or more-project oriented in their approach.


Books, Libraries, and the Choices of Self-Directed Productivity

Open source hardware – as components or production equipment – not only embodies the technical knowledge of products and production the way that traditional components and machines once did. In sharp contrast to the opaque and impenetrable black boxes of advanced 20th-century engineering,  WYS ≠ WYG they give users access to that knowledge as a result of their open source design. Akin to books, which seem meaningless to people who cannot read, but open their content to those who have achieved literacy, open source hardware reveals its technicalities to those who grasp that language.

If open source hardware can be compared to the ‘books’ of commons-based peer production, then TechShops, Hackerspaces and Fab Labs are its libraries. Traditional libraries act as common points of access to knowledge coded in books, and in fact offer locations where knowledge can be produced. Similarly, copy shops allow anybody to produce their own range of print products, from cards to books, T-shirts and mugs. Cyber-cafés also provide access to knowledge, as locations where everybody can link into a common information and communication infrastructure. Those new labs are the places that provide general access to the tools, methods and experience of peer production. Indeed, the National Fab Lab Bill presented to the US Congress in 2010 EVENT argues along these lines, aiming “to foster a new generation with scientific and engineering skills and to provide a workforce capable of producing world class individualized and traditional manufactured goods”. 29

The business proposals of open source hardware and the various fabbing initiatives are not equally straightforward in every case. As discussed, commons-based peer production has found ways to generate monetary returns by selling open source products, charging memberships fees in open source communities, or providing paid education and manufacturing services. To some extent, the strong appeal of commons-based peer production can probably be attributed in part to its hedonic rewards: the pleasure of being creative, the pride of recognition by peers, the feeling of achievement and status. However, there are no clear examples of indirect mechanisms deriving tangible benefits from these hedonic rewards, such as makers getting corporate development assignments or contracts as product managers thanks to their reputation in open hardware design. If such examples exist, they are not being discussed openly. And commons-based peer production has yet to realize its potential as a platform for many more developers and producers to generate a substantial income under market or non-market conditions.

As Yochai Benkler notes, it is “important to see that these efforts mark the emergence of a new mode of production, one that was mostly unavailable to people in either the physical economy (…) or in the industrial information economy.” 30 The initiatives of commons-based peer production give more people more control over their productivity in self-directed and community-oriented ways. The variety of the initiatives give people a range of fundamentally different options to choose from, and indeed requires them to make those choices instead of accepting a mode of consumption that has been predetermined by a lobby of the current “winners in the economic system of the previous century.” 31

Even if the emergence of open source hardware and fabbing initiatives only dates back a few decades, commons-based peer production is still in its early days. Nobody knows yet whether the one and only correct, long-lasting and sustainable approach to this new mode of production has been found yet – or even if such a uniform approach will ever emerge.
REVOLUTION It seems much more likely that the current trend will develop into a plethora of different models that embrace various aspects of commons-based peer production, with users switching between different models as appropriate. It will be interesting to see whether and how traditional businesses will be able to adapt to a new reality of real prosumer choice.

  1. See e.g. Benkler, Y, The Wealth of Networks. How Social Production Transforms Markets and Freedom. New Haven and London, Yale University Press, 2006.
  2. Shirky, C, ‘Re: <decentralization> Generalizing Peer Production into the Physical World’. Forum post, 5 Nov 2007 at finance.groups.yahoo.com/group/decentralization/message/6967 , accessed on 30 August 2010.
  3. Benkler, Y and Nissenbaum, H, ‘Commons-based Peer Production and Virtue’, The Journal of Political Philosophy, Vol. 14, No. 4, 2006, p. 394.
  4. Benkler, Y, ‘Freedom in the Commons: Towards a Political Economy of Information’, Duke Law Journal, Vol. 52, 2003, p. 1246f.
  5. See also Benkler, Y, ‘Coase’s Penguin, or, Linux and The Nature of the Firm’, The Yale Law Journal, Vol. 112, 2002.
  6. Available online at blog.makezine.com/archive/2006/11/the_open_source_gift_guid.html
  7. Jones, R, Bowyer, A & De Bruijn, E, ‘The Law and the Prophets/Profits’. Presentation given at FAB6: The Sixth International Fab Lab Forum and Symposium on Digital Fabrication, Amsterdam, 15-20 August 2010. Available at cba.mit.edu/events/10.08.FAB6/RepRap.ppt , accessed 30 August 2010.
  8. Balka, K, Raasch, C, Herstatt, C, ‘Open Source beyond software: An empirical investigation of the open design phenomenon’. Paper presented at the R&D Management Conference 2009, Feldafing near Munich, Germany, 14-16 October 2009. See also: Balka, K, Raasch, C, Herstatt, C, ‘Open Source Innovation: A study of openness and community expectations’. Paper presented at the DIME Conference, Milan, Italy, 14-16 April 2010.
  9. 2009 study, p. 22.
  10. 2010 study, p. 11.
  11. Idem.
  12. Dolittle, J, ‘OSE Proposal – Towards a World-Class Open Source Research and Development Facility’. Available online at openfarmtech.org/OSE_Proposal_2008.pdf , accessed 6 June 2010.
  13. Hess, K. Community Technology. New York: Harper & Rowe, 1979.
  14. 100kGarages. Available online at www.100kgarages.com , accessed 30 August 2010.
  15. TechShop is the SF Bay Area’s only open-access public workshop. Available online at techshop.ws/ , accessed 30 August 2010.
  16. Anderson, C, ‘In the Next Industrial Revolution, Atoms Are the New Bits’, Wired, Feb. 2010. Available online at www.wired.com/magazine/2010/01/ff_newrevolution/all/1 , accessed 4 June 2010.
  17. HackerspaceWiki. Available online at hackerspaces.org/wiki/ , accessed 30 August 2010.
  18. Grenzfurthner, J, and Schneider, F, ‘Hacking the Spaces’ on monochrom.at, 2009. Available online at www.monochrom.at/hacking-the-spaces/ , accessed 30 August 2010.
  19. Farr, N, ‘Respect the past, examine the present, build the future’, 25 August 2009. Available online at blog.hackerspaces.org/2009/08/25/respect-the-past-examine-the-present-build-the-future/ , accessed 30 August 2010.
  20. List of Hackerspaces. Available online at hackerspaces.org/wiki/List_of_Hacker_Spaces , accessed 30 August 2010.
  21. Synchronous Hackathon. Available online at hackerspaces.org/wiki/Synchronous_Hackathon , accessed 30 August 2010.
  22. Gershenfeld, N, FAB: The Coming Revolution on Your Desktop. From Personal Computers to Personal Fabrication, Cambridge: Basic Books, 2005, p. 4.
  23. Mikhak, B, Lyon, C, Gorton, T, Gershenfeld, N, McEnnis, C, Taylor, J, ‘Fab Lab: An Alternative Model of ICT for Development’. Paper presented at the Development by Design Conference, Bangalore, India, 2002. Bangalore: ThinkCycle. Available online at: gig.media.mit.edu/GIGCD/latest/docs/fablab-dyd02.pdf , accessed 11 July 2010.
  24. Gershenfeld, op.cit.
  25. Gjengedal, A, ‘Industrial clusters and establishment of MIT Fab Lab at Furuflaten, Norway’. Paper presented at the 9th International Conference on Engineering Education, 2006. Available online at: www.ineer.org/Events/ICEE2006/papers/3600.pdf , accessed 3 March 2010.
  26. Pfeiffer, D, Digital Tools, Distributed Making & Design. Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfilment of the requirements for the Master of Science in Architecture. Blacksburg, VA: Virginia Polytechnic Institute and State University, 2006.
  27. Farr, N, ‘The Rights and Obligations of Hackerspace Members’, 19 August 2009. Available online at blog.hackerspaces.org/2009/08/19/rights-and-obligations-of-hackerspace-members/ , accessed 31 August 2010.
  28. Fab Charter, 2007. Available online at fab.cba.mit.edu/about/charter/, accessed 11 January 2011.
  29. H.R. 6003: To provide for the establishment of the National Fab Lab Network (…). Available online at www.govtrack.us/congress/billtext.xpd?bill=h111-6003, accessed 13 Oct 2010.
  30. Benkler, Y, ‘Freedom in the Commons: Towards a Political Economy of Information’, Duke Law Journal, Vol. 52, 2003, p. 1261.
  31. Idem, p. 1276.
]]>
http://opendesignnow.org/index.php/article/libraries-of-the-peer-production-era-peter-troxler/feed/ 0
Grassroots invention http://opendesignnow.org/index.php/visual_index/grassroots-invention/ http://opendesignnow.org/index.php/visual_index/grassroots-invention/#comments Thu, 26 May 2011 11:24:03 +0000 remko http://opendesignnow.org/?p=302 Continue reading ]]> Innovation is everywhere, spreading thanks to the power of the Information Age, not only distributing information around the globe and across cultural boundaries, but also revitalizing notions of informal knowledge and sharing. Accompanying a growing awareness of resource depletion and the need to find renewable energy sources, grassroots invention will be taken more seriously by science and commerce. Another name for grassroots invention could simply be affordable innovation (for necessity and play).

BAMBOO BIKE BY BAMBOOSERO


ERIK (HASH) HERSMAN ➝ WWW.FLICKR.COM/PEOPLE/WHITEAFRICAN

HANDMADE BATTERY LIGHTING ➝ P.192


ERIK (HASH) HERSMAN ➝ WWW.FLICKR.COM/PEOPLE/WHITEAFRICAN

WATER BOILER MADE FROM SCRAP


ERIK (HASH) HERSMAN ➝ WWW.FLICKR.COM/PEOPLE/WHITEAFRICAN

AUTOMATIC HAMSTER SPINNER


COURTESY OF HERALD POST

THE BEST IDEA OF THE NETHERLANDS (TELEVISION SHOW, SBS6)


HET BESTE IDEE VAN NEDERLAND, SBS6 / SBS BROADCASTING

CONVERTIBLE ROOF FOR HOT ROD WHEELCHAIR BY DARK RUBY MOON


ERIC OVELGONE (DARKRUBYMOON) ➝ WWW.CAFEPRESS.COM/DARKRUBYMOON

CUSTOM ASSISTIVE SPOON BY FRENZY


GREGG HORTON ➝ WWW.INSTRUCTABLES.COM/ID/CUSTOM-ASSISTIVE-SPOON

FAB LABS WORLDWIDE ➝ P.44


SOURCE: WWW.FABACADEMY.ORG

TESTING THE FAB FI WIRELESS NETWORK IN AFGHANISTAN


PHOTO: KEITH BERKOBEN

FAB LAB BOSTON ➝ P.154


PHOTO: FAB LAB BOSTON

MOBILE FAB LAB


SOURCE: WEB.MIT.EDU/SPOTLIGHT/MOBILE-FABLAB

]]>
http://opendesignnow.org/index.php/visual_index/grassroots-invention/feed/ 143
Introduction / Marleen Stikker http://opendesignnow.org/index.php/article/introduction-marleen-stikker/ http://opendesignnow.org/index.php/article/introduction-marleen-stikker/#comments Tue, 03 May 2011 13:02:52 +0000 remko http://opendesignnow.waag.org/?p=19 Continue reading ]]> The pioneers of our time are not taking the world at face value, as a given from outside; rather, they see the world as something you can pry open, something you can tinker with.

Marleen Stikker

In his novel The Man Without Qualities, Austrian author Robert Musil describes two ways of thinking and interacting with the world.

“If you want to pass through open doors you have to respect the fact that they have a fixed frame: this principle is simply a prerequisite of reality. But if there is a sense of reality then there must also be something that you might call a sense of possibility. Someone who possesses this sense of possibility does not say for example: here this or that has happened, or it will happen or it must happen. Rather he invents: here this could or should happen. And if anybody explains to him that it is as it is, then he thinks: well, it probably could be otherwise.”  1.

Possibilitarians think in new possibilities, and get all excited when things get messy and life becomes disorderly. In disruption, possibilitarians see new opportunities, even if they do not know where they might lead. They believe, with Denis Gabor, that “the future cannot be predicted, but futures can be invented” 2 .

Realitarians are operating within a given framework, according to the rules that are given, following to the powers there are. They accept the conditions and the institutions as given, and are fearful of disruption.

Whether a person is a possibilitarian or a realitarian has nothing to do with their creativity. People representing these frames of reference can be found in all professions: entrepreneurs, politicians, artists. In fact, art and design are not avant-garde by definition, and it would be overstating the matter to claim that innovation is an inherent quality in the arts – or science, for that matter.

It would equally be wrong to think that all realitarians are reactionary. There are many different kinds of realitarians. Some play with the given rules, finding better ways to use them, making them more efficient, increasing their moral justice and fairness. Others want to cover all eventualities, seeking to keep everything under control in neatly written scenarios that contain no surprises whatsoever.

When it comes to open design, possibilitarians are enticed and enthused by the new opportunities it could bring, even if they do not know exactly what open design will become, or where it might lead. ACTIVISM Possibilitarians see the disruption that open design brings to the design world, and respond by embracing the potential that is inherent in that disruption.

Possibilitarians engage in open design as a process, trusting their own abilities to guide that process. And as possibilitarians, they pursue strategies to be inclusive, to involve others, to build bridges between opposite positions: North-South, old-young, traditional-experimental. Possibilitarians represent a sharing SHARE culture which is at the core of open design. As such, they trust others to make their own contributions and to build upon what has been shared. Trust, responsibility and reciprocity are important ingredients in an open, sharing culture. These factors have been discussed at length in relation to software development; the debate has been revived in the context of the ongoing informatization of society. As with open data, open design will have to address these questions. And as with open data, open design will have to involve the actual end users, not organizations, panels or marketers. Design will have to identify the fundamental questions, which supersede the design assignments issued by mass-producers or governments. And design will have to develop a strategy of reciprocity, particularly when objects become ‘smart’ parts of an interconnected web of things, similar to the emergence of the internet.

OPEN DESIGN WILL HAVE TO INVOLVE THE ACTUAL END USERS, NOT ORGANIZATIONS, PANELS OR MARKETERS.

Open design will have to develop its own language for trust. What are its design principles, its ethics, the responsibilities it entails? MANIFESTOS Although a clear answer to these questions is currently lacking, this absence does not prevent possibilitarians from engaging with open design. They know that this trend is not about a dream of the world as a better place, a dream which could too easily be stigmatized as naive and utopian. Possibilitarians also know that only by taking part in the process, by participating and by giving it a direction can those answers be found.

OPEN DESIGN CAN BE VIEWED AS THE LATEST IN A LONG LINE OF SIMILAR DEVELOPMENTS, STARTING WITH THE FIRST PCS – THE ATARIS, AMIGAS, COMMODORES AND SINCLAIRS – THE ARRIVAL OF THE INTERNET, OF MOBILE COMMUNICATION.

Realitarians, in contrast, respond to open design with fear and mistrust. When a fretwork artist recently realized that a laser cutter could achieve within hours what took her four months to cut, she was extremely disappointed and angry with the machine. The positive effect that the machine could have on her work only occurred to her later. This is the Luddite revived, the fear of the machine that might threaten a person’s livelihood, that could render irrelevant an individual craftsman’s contribution to culture and society.

Realitarians fear that all the energy it costs to create something might be wasted; that the time and effort it took e.g. to write a book would be pointless, that anyone could just go and copy it. Fundamentally, they fear that someone else could commercially utilize something that they have contributed to the public domain. Even Creative Commons CREATIVE COMMONS takes on a threatening aspect in this context, creating a concern that the author will no longer be able to control fair use. Or a designer might argue that open design could result in loads of ugly products, expressing a concern that if anyone can do it, amateurs AMATEURISSIMO willpollutethebeautifulworld of design. This is the realitarian speaking.

We’ve had this discussion in other domains, in other areas: it arose in relation to hacking, and we’ve experienced it over and over in media and journalism – in the 1960s with the pirate radio stations, in the late 1990s with the advent of blogging. Now it has emerged in the domain of design.

Open design can be viewed as the latest in a long line of similar developments, starting with the first PCs – the Ataris, Amigas, Commodores and Sinclairs – the arrival of the internet, of mobile communication. TREND:NETWORK SOCIETY It is often the same people who are involved in these initiatives again and again. These are the pioneers of our time, people with that hacker- artist-activist attitude. They are not taking the world at face value, a given from outside; rather, they see the world as something you can pry open, something you can tinker with.

So they started to experiment. GRASSROOTS INVENTION The first computers gave them a feeling of autarchy. 17 Suddenly, they were able to use desktop publishing; they produced their own newspapers, they were typesetters, they took responsibility – they got organized and put their opinion out there. This was the first DIY DIY movement that was a parallel campaign. In contrast to the Parallel aktion in Musil’s novel, it happened beyond the confines of discussion circles: squatting became a parallel movement to the housing market, and they established their own, alternative media infrastructure. In all likelihood, the dynamic of the internet helped it happen. Indeed, in the Netherlands, the first opportunity to experience the internet was created by a possibilitarian movement – De Digitale Stad (the digital city) in Amsterdam. Commercial internet access became available much later.

Open design is rooted in information and communication technology, giving us all the instruments to become the one-man factory, the world player operating from a small back room. Despite this semblance of easy access, many of these resources require the user to be extremely tech-savvy. In addition, purposeful and effective utilization of these resources requires considerable social skills and expertise in social engineering. This combination of technical and social skills is extremely interesting and very rare. Tech-savvy usually carries the connotation of nerdy, socially handicapped and awkward at communication, while the socially adept are generally assumed to lack technical skills.

A similar schism is strikingly evident in education. As a media student, you might finish your degree without ever having made anything yourself, or being responsible for a product. You may have spent your time studying games made by other people, instead of learning to make good games. As a vocational student learning a trade, you might end up sitting at old machines the whole time, never getting to see a 3D printer, or only encountering these relevantly recent developments at the end of your education, or in an external module instead of in the core programme.

In fact, it may be argued that there is a fundamental dichotomy in society, an essential separation between the field of making and the field of science. There is too little science in making, and too little making in 18 science; these two fields are far too disconnected.

Examples of the opposite are emerging, and the connection between modern technology and craft traditions is sometimes aptly named hyper-craft. The implications for education are huge, and hyper-craft broadens the perspectives in education – not only for design, but for all crafts. Hyper-craft as a practice of open design is not primarily concerned with the objects that are being made. Its focus is on the process of making itself and the responsibilities that makers take – for the monsters they may be creating, for the process of creating, and for the ingredients used. PRINTING

Recently, a vocational school in the Dutch province of Brabant took the idea of the Instructables Restaurant and used it as a blueprint for a cross-over programme that combined elements of their hotel and catering education and their design education. Together, they realized an Instructables Restaurant for the CultuurNacht event – students created furniture based onblueprints BLUEPRINTS theyhaddownloadedand cooked meals prepared according to online recipes. The restaurant served 1500 people that night. The school made a smart addition to the very classical trade of cooking, adding more dimensions, more layers, and creating their first open curriculum.

The agenda of open design – increasing transparency in the production chain, talking about responsibility – is certainly a political agenda. Open design is part of today’s possibilitarian movements, such as open data provided by governments seeking greater transparency. The potentially extreme effects of open information initiatives like Wikileaks are becoming apparent in the enormous backlash affecting the people involved. This is a manifestation of the clash between two worlds: the people operating within the bounds of ‘reality’ fighting back against the challenge to their system.

WHEN ACADEMIC KNOWLEDGE STARTED TO DISAPPEAR BEHIND THE PAYWALLS OF LARGE PUBLISHERS, THE OPEN ACCESS MOVEMENT CREATED NEW WAYS TO MAKE IT ACCESSIBLE AGAIN FOR EVERYBODY.

Open design may appear less extreme: designing is seen as more friendly, more creative, more playful. Much of the unfairness in the field of open design is ‘petty injustice’. These incidents include small production runs that are impossible or prohibitively expensive in a mass-production environment – or manufacturers accustomed to mass marketing who decide what will be included in their collection.

These forms of petty injustice are certainly not the only problems in open design, however; there are also profit-driven corporations limiting technical and design solutions, preventing new possibilities from being put to good use. This immediately invokes the global dimension of open design. When international trade agreements become a guise for Western corporations to privatize indigenous knowledge, activists ACTIVISM and librarians deploy open design strategies, documenting and codifying this knowledge and developing protection mechanisms such as the Aboriginal and Torres Strait Islander Library and Archive Protocols in Australia.

When sustainable solutions are locked away in patents, initiatives such as the GreenXchange started by Creative Commons and Nike facilitate easy licensing schemes. When academic knowledge started to disappear behind the paywalls of large publishers, the Open Access movement created new ways to make it accessible again for everybody.

When transnational supply chains blur the provenance of raw materials and the labour conditions of mining, harvesting and manufacturing, fair trade campaigns advocate transparency and propose alternatives, for example the Max Havelaar product range or the Fairphone project.

Disrupting these macro-political movements that privatize the commons or control access to the public domain is the major challenge for open design. An effective response to that challenge starts with understanding and reflecting on what we are doing when we make things.

  1. Musil, R, The Man without Qualities. 1933. Trans. S. Wilkins. London: Picador, 1997, p. 16
  2. Gabor, D, Inventing the Future. London: Secker & Warburg, 1963. p. 207
]]>
http://opendesignnow.org/index.php/article/introduction-marleen-stikker/feed/ 0