Open Design Now » architecture http://opendesignnow.org Why design cannot remain exclusive Thu, 13 Dec 2012 09:32:59 +0000 en hourly 1 http://wordpress.org/?v=3.3.1 Architecture http://opendesignnow.org/index.php/visual_index/architecture/ http://opendesignnow.org/index.php/visual_index/architecture/#comments Mon, 25 Jul 2011 12:48:53 +0000 remko http://opendesignnow.org/?p=1404 PHONE GRAPHIC USER INTERFACE KIT FOR DEVELOPERS –> Ponoko


Design by: Teehan+Lax

ANDROID GRAPHIC USER INTERFACE KIT FOR DEVELOPERS


Design by Pavel Macek

]]>
http://opendesignnow.org/index.php/visual_index/architecture/feed/ 0
(UN)LIMITED DESIGN CONTEST / BAS VAN ABEL http://opendesignnow.org/index.php/case/unlimited-design-contest-bas-van-abel/ http://opendesignnow.org/index.php/case/unlimited-design-contest-bas-van-abel/#comments Fri, 27 May 2011 09:55:57 +0000 remko http://opendesignnow.org/?p=473 Continue reading ]]> (Un)Limited Design contest
Experimenting with Open Design

Bas van Abel

Open design covers an extensive area and its contours are not yet clearly defined, making it difficult for designers to come to grips with the developments. One of the most tangible open design experiments was the (Un)limited Design Contest, which challenged the designers to try something out and experience for themselves what happens next. Alexander Rulkens (Studio Ludens), 1 Sylvie van de Loo (SEMdesign) 2 and Goof van Beek 3 share their experiences.

All designs that were submitted were made with digital manufacturing technology, using machines that turn digital designs into physical products. Digital manufacturing offers the designer many new possibilities. Professional designer Sylvie van de Loo used a computer-controlled laser cutter to create her Fruit bowl 128DOWNLOADABLE DESIGN The bowl is constructed from 128 pieces cut out of cardboard. Her initial idea was to work out a prototype of the bowl in clay. As she was drawing the bowl in 3D on the computer with a friend, she began checking the possibilities for manufacturing the product digitally. For this, she went to the Fab Lab in Utrecht.

Sylvie: “I’ve been in the Fab Lab before, but I didn’t see the potential for my own work at that time. I thought it was all a bit too technical; I felt that a creative approach was lacking. Now I’m discovering that the technique is an important source of inspiration to me.” Sylvie took the advice to turn her bowl into a technical drawing program, which was capable of breaking the 3D form up into sectional planes with a specific width. This approach allows her to generate forms for different materials, which are then cut out with the laser cutter.
AESTHETICS: 2D It is a fairly technical process, which has had an important influence on the creative process and was one of the deciding factors in the final form and appearance of the end product.

Sylvie: “Working with the laser cutter was really a revelation for me. What a cool machine! Anything is possible. You can form 3D layers out of 2D layers. It’s very precise, and you can engrave the most beautiful forms with it. Because you yourself get to work with the prototyping technology, the process of making it is a valuable addition to the final design. If I hadn’t had the chance to experiment with the machine, the definitive form and choice of material would never have occurred to me.”  HELLO WORLD

But still, designer Alexander Rulkens van Studio Ludens feels there is a great deal of room for improvement in how people gain access to the designing process and machines.  ARCHITECTURE Alexander: “I think the Fab Lab concept can benefit from better interfaces to wield the great power that the technology can give.” He didn’t submit a product for the contest; instead, he submitted a software tool that enables everyone to create their own design easily.

Sharing for Yourself

It’s clear that access to technology offers new possi-bilities, but what possibilities does sharing creative work offer the designer? Goof van Beek won the design contest in 2009; his design received extensive publicity. Goof: “It’s fun when people come up and talk to you because they saw your design somewhere. I’m not sure if it really was the open nature of the design that gave the dress the amount of attention that it got, but it was a good first introduction to the reality outside the environs of my study. Meanwhile, I have been approached to take part in an exposition.”

It could be that the conditions of the contest played a role in this: under the (Un)limited Designs terms, the design could be published and shared without prior approval from the  DESIGNER designer. On the one hand, this made it possible for the designers to establish a name for themselves more quickly, and a company that finds the product interesting knows who to go and talk to. However, it also means that designers have given their permission for others to adapt the design and publish their derivative design. “It is a bit scary, but it also has its advantages,” says Sylvie. “The bowl is finished as far as I’m concerned, and I think it’s really great that someone else could pick it up and give it their own twist.”

She isn’t afraid this openness will stand in her way as a designer or harm her business interests. Sharing the design also associates her with the product as the original designer – and even if a design hasn’t been explicitly shared, the designer still always runs the risk of ideas being stolen.

Alexander emphasizes that it’s not just a business matter. Alexander: “The major benefit of sharing is the opportunity to get feedback on your thought and design process early on. You are opening yourself up to the knowledge of others, to different perspectives, which you need as a designer to come up with ideas that are relevant to society. The fact that your design is open to improvement ultimately means that it will be better suited to the people who are going to use it in their day-to-day lives.”

Signature

But looking at the entries in the design contest, only three products were submitted in the ‘fusion’ category. It’s a category that provides incentives for the re-use and re-interpretation of designs that had already been submitted.  REMIX Sylvie and Goof both expect that this has to do with the importance of the designer’s signature style, especially in a contest. Sylvie: “There is a difference between what you use from other designs as an inspiration for your own design, and basing your design entirely on somebody else’s. Originality is important to a designer, and designers aren’t used to explicitly recognizing others for contributing to their design. This makes us choose the safe way by inventing something new.’ Goof: “It’s strange that we don’t consider improving somebody else’s product a challenge, because I would really like to take a few designs in hand in my surroundings. I do know several designs that I think could be done better.” Sylvie thinks that education has an important role in forming this attitude. Sylvie: “At the academy, we were encouraged to be original by creating work that is unique and distinguished.  DESIGNERS I never saw any–one literally taking an existing design as a starting point for a personal interpretation or addition. Maybe we still consider ourselves too good to do that.”

Alexander has a somewhat more radical view. He believes that open design will essentially change the role of the designer. Alexander: “Designers will have to start listening better in a world where the designer doesn’t make the design decisions, but rather facilitates the process of designing decisions.” The meaning of a signature style is changing, as is the way in which we handle that signature style. Alexander: “We have to move towards a system where a person’s contribution to a design can be measured and that person can be given proper credit for their efforts. This means that the designer has to let go of the feeling that “it was my idea”.

It is not yet possible to draw hard and fast conclusions from the results of the (Un)limited Design Contest, EVENTS but it is clear that the designers will engage in the challenge. The most valuable aspect of this kind of experiment is that it enables us to explore certain aspects of open design. In the first edition of the contest, the question was still whether designers were willing to throw open their own design. The emphasis in the second edition was on compound products; the challenge for the third edition will probably be achieving a design dialogue between the contestants.

unlimiteddesigncontest.org

]]>
http://opendesignnow.org/index.php/case/unlimited-design-contest-bas-van-abel/feed/ 0
REPRAP / ERIK DE BRUIJN http://opendesignnow.org/index.php/case/reprap-erik-de-bruijn/ http://opendesignnow.org/index.php/case/reprap-erik-de-bruijn/#comments Fri, 27 May 2011 09:54:17 +0000 remko http://opendesignnow.org/?p=467 Continue reading ]]> RepRap
The Viability of Open Design

Erik de Bruijn

The RepRap digital fabrication system can 3D print a large share of its own parts. In fact, it reproduces almost 90% of the really important mechanical parts that convey most knowledge. The other 10% is the hot end and the main electronic boards for motor control.

This allows for a decentralized community to independently produce physical parts based on digital designs that are shared via the internet. Apart from improving the device, dedicated collaboration infrastructure  ARCHITECTURE was developed by user innovators. Examples of such infrastructure include Thingiverse, a web-based design sharing platform, and CloudSCAD, a web-based Solid 3D CAD Modeller.

While open source software development has been studied extensively, relatively little is known about the viability of the same development model for a physical object’s design. To remedy this knowledge deficit, a case study and survey of the RepRap community was conducted (n=386). 1

There is substantial adoption and development of open 3D printer technology,  PRINTING even when compared to unit sales of the largest vendors in the 25-year-old industry. RepRap community members are spending between 145 and 182 full-time equivalents and have spent between 382,000 and 478,000 US dollars on innovation alone. At the RepRap project’s six-month doubling interval, it is entirely feasible that its adoption and disruptive levels of innovation will exceed that of the incumbent industry.

Open design and open source software also share many similarities. Design information can be digitally encoded and transmitted much like software code. The motivation to develop or improve software or a physical object may be induced partly by the ability to benefit from its use. In the context of this study, another important similarity is that, both in open source software and open design, the tools to practice open source development are often user-developed as well.

Within the community, there is a higher incidence in modifications of hardware than in software, and, surprisingly, hardware modifications are expected to be relatively easier for others to replicate. The level of collaboration  CO-CREATION is also higher for software than for hardware.

Open source physical design, also known as open design, differs from open source software in that it has an embodied manifestation. This has implications for dissemination of the related knowledge and the logistics of this manifestation that has led observers to think that open design is fundamentally different. Moreover, OSS differs from open design in terms of the maturity of its licenses.

Personal Fabrication

In the research, special attention is given to the role of the capability provided by digital fabrication, and their effect on the ability to collaborate. It affects the cost of development, production, reproduction  REPRODUCTION and distribution of physically embodied innovations. While artefact-embodied tacit knowledge influences the locus of innovation, the implications of this ‘embodiment’ can be mitigated. Results from the survey indicate higher levels of sharing, collaboration and even a perceived higher replicability for hardware, when compared to software. This supports the notion that personal fabrication tools can play an important role to enable distributed activity in open design.

Through Thingiverse, 1,486 designs of physical objects have been shared in the last six months. Also, more than 10,000 objects were independently manufactured by its members’ machines. While already substantial, this level activity exhibits similar exponential growth characteristics.

In offering its tools, infrastructure and incentives, the RepRap community uses the open source development methodology to design physical objects, achieving great success and promoting democratization of the process. The extensibility of this phenomenon has many implications. Obtaining the digital design for a product becomes increasingly attractive compared to having to acquire the physical object.  BLUEPRINTS This is partly due to logistics of physical objects, involving lead-times and transport costs.

Many RepRap community members possess a fabrication capability that the average person does not have access to. While this does limit the present-day generality of the study’s findings, there are many reasons to expect a high likelihood of personal access to digital fabrication in the near future. The rapid development and adoption of increasingly affordable, yet more powerful and valuable fabrication technologies and the anti-rival logic of open design allow user-dominant collaborative development to have significant implications for the provisioning of goods in society.

reprap.org

  1.  Erik de Bruijn conducted his study entitled ‘On the viability of the Open Source Development model for the design of physical object: Lessons learned from the RepRap project’ together with Jeroen de Jong (EIM and Erasmus University Rotterdam) and Eric von Hippel (MIT Sloan School of Management). Available online at thesis.erikdebruijn.nl/master/MScThesis-ErikDeBruijn-2010.pdf , accessed 19 November 2010.
]]>
http://opendesignnow.org/index.php/case/reprap-erik-de-bruijn/feed/ 0
CRITICAL MAKING / MATT RATTO http://opendesignnow.org/index.php/article/critical-making-matt-ratto/ http://opendesignnow.org/index.php/article/critical-making-matt-ratto/#comments Fri, 27 May 2011 09:17:14 +0000 remko http://opendesignnow.org/?p=434 Continue reading ]]> Open design can be employed to develop a critical perspective on the current institutions, practices and norms of society, and to reconnect materiality and morality. Matt Ratto introduces ‘critical making’ as processes of material and conceptual exploration and creation of novel understandings by the makers themselves, and he illustrates these processes with examples from teaching and research.

Matt Ratto

As noted by other authors in this collection, open design practices, communities, and technologies signal shifting relations in the world of design – between experts and novices, between proprietary and open access to information, and between producers and consumers of media and technologies – to name just a few.  TREND: NETWORK SOCIETY

In addition to these more obvious shifts, open design also encourages an increasingly critical perspective on the current institutions, practices and norms of technologically mediated society. Open design, particularly in regards to digital hardware and software heralds new possibilities for artists, scholars and interested citizens to engage more fully in a simultaneously conceptual and material critique of technologies and information systems in society. Rather than just bemoaning the restrictions placed on users by institutionalized technological systems, engaged makers have the increasing ability and opportunity to constitute and construct alternatives. Such alternatives do not always replace the existing systems, nor are they often intended to. Instead, these material interventions provide insubstantiations of how the relationship between society and technology might be otherwise constructed. Again, this is particularly true for complex hardware and software solutions  OPEN EVERYTHING that have traditionally been seen to require proprietary and closed development in order to ensure success.

Commons-based Peer Production

For example, the many open hardware and software cell phone projects, such as the tuxPhone project started in 2005, provided conceptual and material guidance for the increasingly open development of cell phone operating systems and applications. If nothing else, such projects demonstrated the institutional and legal hindrances to such open developments, revealing that the problems in creating open alternatives were not just technical in character. WYS ≠ WYG While the technical processes and results of projects like tuxPhone provided various kinds of guidance as to future handheld projects and the availability of open hardware alternatives, another important result of this project involved increasing the visibility of the institutional, organizational and legal arrangements that linked cell phone hardware and handset manufacturers to the telephony service providers – arrangements that made opening up the application and operating system development environments tricky at best. In point of fact, it ultimately took market leaders with a lot of pull – Apple and Google – to begin to untie the closely coupled linkages between cell phone applications, operating systems, hardware, and service agreements, and, in doing so, provide transformative competition in the cell phone market.  ARCHITECTURE Both Apple and Google have done so in very different ways and for their own ends. However, Apple and Google’s process and the technical and social choices that they have made are differently open and understood differently by those designers and makers who followed the open cell phone projects, compared to those who did not experience the open cell phone developments as they unfolded.

Open design heralds new possibilities for artists, scholars and interested citizens to engage in a simultaneously conceptual and material critique of technologies and information systems in society.

Yochai Benkler, writing about open source and open content development initiatives, has described these communities and practices as ‘commons-based peer production’ 1 – a somewhat more inclusive term than the narrower ‘user-generated content’ that is currently in vogue.  DOWNLOADABLE DESIGN One claim he makes is that these practices can result in different products and services than those currently produced through proprietary market forces. For Benkler, commons-based peer production can result in more than just open but substantively similar products and services. Instead, these practices can produce entirely novel results – and more importantly, they can serve audiences and needs that are under-addressed by the marketplace.

The above example demonstrates that open design potentially provides more than just another way of designing and creating novel products and services. Instead, and I repeat the word ‘potentially’ here, open design, when embedded in practices of socio-technical reflection and critique, provides the possibility for truly innovative thinking and making, the result of which is not just more of the same, but includes novel and more comprehensive understandings as to the relationships between social life and technical work. In our own scholarship and teaching, we call such potentials ‘critical making’.

Critical Making

The term ‘critical making’ is intended to highlight the interwoven material and conceptual work that making involves. As a teaching and research strategy, critical making shares an emphasis on ‘values’ with both critical design and other critical practices – such as the critical technical practice 2 from which it derives, as well as value-sensitive design 3 and values-in-design. 4 I take the exploration of values in society and their implementation and concretization within technical artefacts as my starting point, choosing to explore these through a series of processes that attempt to connect humanistic practices of conceptual and scholarly exploration to design methodologies including storyboarding, brainstorming and bodystorming, and prototyping.

I call this work ‘critical making’ in order to highlight the reconnection of two modes of engagement with the world that are typically held separate: critical thinking, traditionally understood as conceptually and linguistically based, and physical ‘making’, goal-based material work. I see this as a necessary integration for a variety of reasons: first, as a way of overcoming the ‘brittle’ and overly structural sense of technologies that often exists in critical social science literature; second, as a way of creating shared experiences with technologies that provide joint resources for transforming the socio-technical imagination; and third, as a site for overcoming problematic disciplinary divides within technoscience.

While similar in practice to critical design and the other perspectives listed above, critical making has somewhat adjacent goals. As defined by Tony Dunne:

Critical design is related to haute couture, concept cars, design propaganda, and visions of the future, but its purpose is not to present the dreams of industry, attract new business, anticipate new trends or test the market. Its purpose is to stimulate discussion and debate amongst designers, industry and the public about the aesthetic quality of our electronically mediated existence.5

Critical making, on the other hand, is less about the aesthetics  AESTHETICS: 2D and politics of design work, and focuses instead on making practices themselves as processes of material and conceptual exploration. The ultimate goal of critical making experiences is not the evocative or pedagogical object intended to be experienced by others, but rather the creation of novel understandings by the makers themselves. Neither objects nor services are the currency of critical making. For me, it is the making experience that must be shared. Therefore, critical making is dependent on open design technologies and processes that allow the distribution and sharing of technical work and its results.  BLUEPRINTS In this way, critical making relies on a constructionist 6 methodology that emphasizes the materiality of knowledge making and sharing. The ‘objects’ of critical making are intended to be shared making experiences, curated through both material and textual instructions. Such curated ‘making experiences’ have long been the domain of technical and scientific education; any toy store can provide myriad examples, and electronic ‘kits’ are currently experiencing a renewed enthusiasm.  DIY What differentiates critical making is its attention to the interwoven social and technical aspects of modern life – what theorists call the socio-technical 7 – rather than being primarily about technical expertise or functional knowledge about the natural world.

These are fine-edged distinctions and might cause some readers to wonder why it is necessary to define yet another term for yet another design-based methodology. In point of fact, much of the ongoing scholarly and technical work associated with critical making was initiated by discomfort around the dissonance of the term – why in fact does ‘critical thinking’ seem such a common-sense term, while ‘critical making’ seems odd to most of us? I believe this stems from a continuing separation in Western society between ‘thinking’, which is understood as happening primarily in the mind or at most through the mediation of language, and ‘making’, which is understood as an a-conceptual, a-linguistic, and habitual form of interaction with the world.

Makers – and that involves most of us in one way or another – understand the fallacy of this position. The phrase ‘critical making’ is therefore intended to signal a deep research commitment to the co-constructed nature of our socio-technical world.

Critical Making Lab and Method

The Critical Making Lab at the University of Toronto is sponsored by the Faculty of Information, and by the Canada Foundation for Innovation and the Social Sciences and Humanities Research Council. It was established as a research, teaching and infrastructure project. Our main focus is the material semiotics of digital information. 8 AESTHETICS: 3D In the lab, we explore how addressing information as both symbolic and material object reveals intriguing connections and contradictions in the role of information in individual, cultural and institutional practice. We work to unpack the complexity of information through critical making experiences that link conceptual and physical exploration. These experiences may be curated for pedagogical or for research purposes, but each tends to consist of the following interactive and non-linear steps: a comprehensive review of existing scholarly literature on a socio-technical topic; the development of a metaphorically connected making experience, typically using the ‘kit’ form; the definition of instructions to assist participants in making a technical artefact as well as following a conceptual argument; holding a workshop with stakeholders using the kit and instructions; recording and analysing the results.

Critical Making Teaching

The first critical making course was held at the Faculty of Information in 2008. In the winter of this year, we taught a master’s level course that used making to explore critical information issues such as intellectual property, privacy, questions of embodiment, and so forth. In this course, we made use of the Arduino software and hardware development environment due to its open source nature and its active and supportive artist and designer communities. We explicitly chose to use a physical computing platform rather than a mainly software-based development for two initial reasons. First, the material, hands-on nature of the Arduino called attention to the physicality of information, an important aspect of our teaching and research goals. When working in the primarily textual world of software development, it is less obvious that material work is going on. The Arduino makes such work part of the development process, and the ‘push-back’ of the physical electronics – the resistance of reality to our attempts to contain it – is therefore more present. Second, the movement to the material world often seems to be accompanied by a less functionalist, more emotional and embodied reaction to the topics under construction/discussion. Together, the ‘push-back’ of the material and the embodied and affectual nature of students’ responses to it can engender a more invested and involved participant. These aspects of ‘constructionist’ pedagogy have been previously noted by science and mathematics educators. 9

However, a third reason to use more material forms of development emerged during initial experiences. The ‘making material’ of digital interactions and experiences soon turned out to be an evocative strategy for unpacking the social and technical dimensions of information technologies. For example, one assignment given to the students was to build a ‘physical rights management’ (PRM) system, a digital system that managed physical objects in similar ways to how digital rights management systems manage digital resources. We had initially devised this assignment simply as a way of ‘de-normalizing’ DRM practices by changing their context and making them unfamiliar – a sort of surrealist move of de-familiarization. The students took us at our word, looked closely at how DRM systems controlled digital resources and created often dramatic analogues (literally) of such control mechanisms.

For instance, one group of students built a model of a photocopy machine that used RFID cards to set permissions on the physical copying of books and journals. If these permissions were not followed, the system would automatically send a message to the appropriate (imaginary) authorities and display a message to the photocopy machine user to stay where they were until the police arrived. In the following year, students constructed an alternative PRM system, one that placed the control mechanism in the book itself. In this version, the books used a light sensor to detect when they were being photo-copied. If permissions on copying were breached, the book would ‘self-destruct’ by popping a balloon containing ink.  GRASSROOTS INVENTION

The ultimate goal of critical making experiences is not the evocative or pedagogical object intended to be experienced by others, but rather the creation of novel understandings by the makers themselves.

The absurdity of these modes of control was not lost on the students, who explicitly designed and built their systems based on an analysis of equally absurd methods that they had picked out from existing DRM systems.  KNOWLEDGE Following this assignment, students remarked that previously they had understood in an abstract way how DRM influenced the use and creation of media. However, by constructing their own PRM system and having to make decisions about how it might function, they not only felt that they increased their knowledge, but they also became more invested and in a sense responsible for the adoption and use of DRM. In previous work on critical making, we have called this the movement from ‘caring about’ an issue to ‘caring for’ an issue. 10

The course has since been taught in 2009 and will be taught again in 2010. However, teaching a course which is simultaneously technical, social, conceptual and material is not an easy task, particularly when that course is located within a social sciences faculty rather than one of design or engineering. Such faculties are not set up to handle simple requirements such as sinks in classrooms, or ventilation for soldering irons. The material nature of critical making as pedagogy is demonstrative of why such methods are not more integrated outside of traditional disciplines. However, open design tools and processes provide some of the infrastructure necessary to do this work.

Critical Making Research

In addition to the pedagogical goals outlined above, we are also engaged in critical making as a research strategy. This typically involves curating critical making experiences in order to engender insight and perspective on socio-technical phenomena for stakeholders and other participants. Here we draw upon ethnographically informed research methodologies such as action research 11 and more explicitly on the methods and perspectives associated with cultural probes. 12 Past research that we have undertaken using critical making has addressed the role of materiality in social research 13 and current projects address the socio-technical implications of bio-sensors and the labour and organizational dimensions of digital desktop fabrication. As in the teaching strategies described above, open design tools and processes are essential to the development of critical making as research.

Conclusion and Future Work

Critical making is an intensely trans-disciplinary process, one that requires research skills from humanities and social science disciplines and a familiarity with a wide range of scholarly literatures. At the same time, critical making requires some technical expertise on the part of the researcher, who must curate a technical experience for participants with little or no technical background.  AMATEURISSIMO

As a teaching and a research method, critical making is thus dependent on open design methods, tools and communities. To put it most simply, the expertise necessary to create prototypes and engage in processes of software and hardware construction must be open and available in order to allow for the kinds of critically engaged practices described above. Note that this is not about replacing or reproducing designers or design expertise. ‘Critical makers’ (understood broadly) emerge from a variety of disciplinary contexts and only some of them are interested or engaged in the kinds of tasks associated with design.

Equally, critical making requires institutional resources such as space, equipment and access to expertise that is not typical of the humanities or social sciences. We have been lucky to be located in a supportive faculty, university and funding context that is interested in methodological innovation and in trans-disciplinary research. However, problems still arise, with critical making being seen as either too technical for humanities and social science researchers and students, or, on the other hand, as not being technical enough for the development of novel technological skills and products. Open design methods and tools provide some guidance and support in this regard, but more work is necessary to establish making as an intrinsic part of social research.

Ultimately, we see the integration of socio-technical critique and material making as a necessary part of what Latour has called the development of a ‘cautious Prometheus’. 14 In his keynote address to the Design History Society, Latour lays out a model for acknowledging the interconnectedness of semiotic and material life. He also details design’s role in helping us move from considering material things as given, natural and uncontested objects, e.g. ‘matters of fact’, to thinking of them as being intrinsically political, contentious and open to discussion and debate. He also acknowledges the necessity of this transition for political and ecological reasons, but notes that this move is far from over. Latour raises the issue:

How can we draw together matters of concern so as to offer to political disputes an overview, or at least a view, of the difficulties that will entangle us every time we must modify the practical details of our material existence? 15

Open design is a necessary part of this development, but not just because it democratizes or ‘opens’ design to the masses. Rather than replacing professional design expertise and skill, our sense is that by encouraging and supporting design methodologies for non-traditional design ends – such as the socio-technical critique that is the main goal of critical making – open design helps bring about a kind of socio-technical literacy that is necessary to reconnect materiality and morality. This, ultimately, may be the most important consequence of open design.

  1. Benkler, Y, ‘Freedom in the Commons: Towards a Political Economy of Information’, Duke Law Journal, 52(6), 2003, p. 1245–1277.
  2. Agre, P, ‘Toward a Critical Technical Practice: Lessons Learned in Trying to Reform AI’, in Bowker, G, Gasser, L, Star, L and Turner, B, eds, Bridging the Great Divide: Social Science, Technical Systems, and Cooperative Work. Erlbaum, 1997. Dourish, P, Finlay, J, Sengers, P, & Wright, P, ‘Reflective HCI: Towards a critical technical practice’, in CHI’04 extended abstracts on Human factors in computing systems, 2004, p. 1727–1728.
  3. Friedman, B, ‘Value-sensitive design’, interactions, 3(6), p.16-23. DOI:10.1145/242485.242493.
  4. Flanagan, M, Howe, D, & Nissenbaum, H, Embodying Values in Technology: Theory and Practice. 2005 (draft).
  5. Dunne, A, & Raby, F, Design Noir: The Secret Life of Electronic Objects. Birkhäuser Basel, 2001.
  6. Papert, S, Mindstorms: Children, Computers, and Powerful Ideas (2nd ed.). Basic Books, 1993.
  7. Law, J, After method: mess in social science research. Routledge, 2004.
  8. Haraway, D, Simians, Cyborgs, and Women: The Reinvention of Nature (1st ed.). Routledge, 1990. Hayles, N, ‘The Materiality of Informatics’, Configurations, 1(1), 1993, p. 147-170. Hayles, N, How we became posthuman: virtual bodies in cybernetics, literature, and informatics. University of Chicago Press, 1999. Kirschenbaum, M, Mechanisms: New Media and the Forensic Imagination. The MIT Press, 2008.
  9. Lamberty, K, ‘Designing, playing, and learning: sustaining student engagement with a constructionist design tool for craft and math’, in Proceedings of the 6th international conference on Learning sciences, 2004, p. 652.
    Lamberty, K, ‘Creating mathematical artifacts: extending children’s engagement with math beyond the classroom’, in Proceedings of the 7th international conference on Interaction design and children, 2008 p. 226–233.
  10. Ratto, M, ‘Critical Making: conceptual and material studies in technology and social life’, paper for Hybrid Design Practice workshop, Ubicomp 2009, Orlando, Florida.
  11. Lewin, K, ‘Action research and minority problems’, J Soc. Issues 2(4), 1946, p. 34-46. Argyris, C, Putnam, R, & Smith, D, Action Science: Concepts, methods and skills for research and intervention. San Francisco: Jossey-Bass, 1985.
  12. Gaver, B, Dunne, T, & Pacenti, E, ‘Design: Cultural probes’, interactions, 6(1), p. 21-29. DOI:10.1145/291224.291235.
  13. Ratto, M, Hockema, S, ‘Flwr Pwr: Tending the Walled Garden’, in Dekker, A & Wolfsberger A (eds) Walled Garden, Virtueel Platform, The Netherlands, 2009.Ratto, op.cit.
  14. Latour, B, ‘A Cautious Prometheus? A Few Steps toward a Philosophy of Design’, Keynote lecture for the Networks of Design* meeting of the Design History Society, Falmouth, Cornwall, 3rd September 2008.
  15. Idem (p.12).
]]>
http://opendesignnow.org/index.php/article/critical-making-matt-ratto/feed/ 968
DESIGN LITERACY: ORGANIZING SELF-ORGANIZATION / DICK RIJKEN http://opendesignnow.org/index.php/article/design-literacy-organizing-self-organization-dick-rijken/ http://opendesignnow.org/index.php/article/design-literacy-organizing-self-organization-dick-rijken/#comments Fri, 27 May 2011 08:41:18 +0000 remko http://opendesignnow.org/?p=423 Continue reading ]]> The position of knowledge and expertise is changing radically, particularly in relation to how design literacy is affected when confronted with digital tools and media. Dick Rijken analyses design literacy on three levels – strategic, tactical, and operational – and examines the requirements of open design for developing a design vision, design choices and design skills.

Dick Rijken

Life in this network society  TREND: NETWORK SOCIETY is complex. We are involved in many different kinds of fluid relationships with friends, family, acquaintances, co-workers, project partners, companies, brands, websites, platforms, clubs, schools, and many other kinds of communities. More often than not, we maintain these relationships using digital media like Facebook, YouTube, Flickr, and plain old email. We connect, communicate and share like our lives depend on it – as, increasingly, they in fact do.  SHARING

In his article, Paul Atkinson talks about the demise of the grand narrative of modernist design. While this is very true, it is not solely applicable to design; it applies similarly to all grand narratives, and to modernism in general. Where we were once infatuated by concepts like universal truth and linear progress, we now find ourselves in a chaotic maze of anecdotes and interconnected ideas. Linear progress has become perpetual change with no shared direction. Within that change, we are on a perpetual quest for personal meaning, no longer seeking truth. All this is not necessarily a bad thing, but it does make life difficult and unpredictable. If we can learn to improvise and to adapt, life can be deeply meaningful and rewarding. We are not there yet, though; there is still a lot to learn.

We connect, communicate and share like our lives depend on it. As, increasingly, they in fact do.

This article deals with the changing position of knowledge  KNOWLEDGE and expertise in open networks. Digital tools and media are generic infrastructures for creating, sharing and transforming information. They enable and facilitate personal learning on a massive scale. Anything that can be converted into a digital format can also be stored, shared and used by anyone, anywhere. This changes everything that has anything to do with ideas – and therefore also changes design. It changes how we design, it changes what we design, it changes how we think about design, and it changes how we learn and teach design. Ultimately, it will also change who designs. Web 2.0, with the concept of user-generated content at its core, will not leave the design discipline untouched.

Fundamental Paradoxes

In order to understand what is happening to design, we need to understand two strongly related paradoxes that are fundamental features of networks: the paradox of identity, and the paradox of choice.

The paradox of identity arises from the fact that networks are made of nodes and links, i.e. identities and relationships. Nodes have their own unique identity, but that identity is meaningless without links to other nodes. We have become more independent from others through the development and actualization of our own unique individual self. But at the same time, we have become more dependent on others, since who we are depends to a large extent on who we relate to and interact with. We feel a need to stand out in a crowd, but we are nothing if not connected.  TREND: NETWORK SOCIETY

We depend on fluid networks around us for our daily lives’ activities. Parties are announced on and communicated through Facebook, and the fun is later shared  SHARING through pictures on Flickr. We find jobs using LinkedIn, where we present our professional résumés, and ask people we’ve worked with in the past to write positive testimonials about us. We don’t exist if we have no visible presence in the networks we want to be involved in. If you are what you act like, you better make sure you act like who you are – or who you want to be.

This makes the network society an essentially cultural place. This is true not just in the anthropological sense that everything we learn is seen as ‘culture’, but in a very instrumental sense as well: activities like ‘expression’ and ‘reflection’ that are at the core of art and related cultural activities give form to the networked life of an individual. And this brings us to the second paradox, the paradox of choice. We are the designers of our own lives through the choices we make, and there are more choices open to us now than ever before. At the same time, this freedom has a dark side to it: we must choose, whether we like it or not.  MASS CUSTOMIZATION The freedom of choice that we have is also an inescapable obligation. With choice comes responsibility. The ability to reflect and give form to our lives within given constraints is just as important for an individual as reading, writing or arithmetic. In this context, we move from ‘design as culture’ to a culture of design, where design is part of our natural mode of being.

Atoms and Bits

There is help at our disposal. Digital tools, digital media and the vast resources on the internet collectively create a massive open and accessible infrastructure for individual and communal expression and reflection. In some domains, we have seen an explosive amount of activity (music production, digital photography) that has turned whole industries upside down.  OPEN EVERYTHING Other domains are just getting warmed up. This is particularly true for three-dimensional objects. As different technologies for 3D printing are becoming affordable, Fab Labs (‘fabrication laboratories’, a concept developed at MIT’s Center for Bits and Atoms) have spread from inner-city Boston to rural India, from South Africa to the far north of Norway. Activities in Fab Labs range widely, including technological empowerment; peer-to-peer, project-based technical training; local problem-solving; small-scale, high-tech business incubation; and grassroots research.

There is a production infrastructure in the making that works with standardized formats for specifying 3D designs, so that our ideas for objects can be published, shared and modified just as easily as video clips on YouTube.

There is a production infrastructure in the making that works with standardized  STANDARDS formats for specifying 3D designs, so that our ideas for objects can be published, shared and modified just as easily as video clips on YouTube. Do-It-Yourself is no longer a matter of wood and nails; DIY  DIY is becoming more refined in terms of possible forms and construction concepts. In other fields, technological impulses like this have created an explosion of creativity among experts and amateurs alike. Accompanying that surge of creative expression, there is an awareness of the fact that technological facilitation is only meaningful at a very basic level. Anything that is fundamentally expressive or reflective derives its value from ideas and values that are embodied – and ideas and values come from people, not from technology. Again: anything is possible, but what do we want? Before we can rearrange atoms, we have to rearrange bits. Ideas! A richer palette of possible material forms requires a richer imagination than ever before. Buying a guitar does not make me a musician. Access to 3D design tools does not make me a designer.

Why Keep It Simple?

The concept of self-organization is an intriguing idea. Online media environments like YouTube, Flickr and Blogspot prove that well-designed (!) infrastructures
ARCHITECTURE can indeed facilitate personal expression on a mind-boggling scale, but they have one thing in common: simplicity. The media formats are simple (‘upload a picture here’, ‘this is a heading, type your text here’), and the media produced and shared by these tools are simple (a picture, a movie clip, a piece of text). But real life is not always that simple. As I’ve argued above, in networks, life can be annoyingly complex and most of us are not born with sufficient imaginative capacity to fully utilize the potential of the production technologies that are currently available. Most of us need help. When it comes to more complex media or artefacts, rolling out infrastructures and expecting self-organization to take care of the rest is simply not enough. Organizing self-organization is a lot of work, and does in fact involve a great deal of design and inspiration.

We are designers of our own lives through the choices we make. this freedom has a dark side to it: we must choose, whether we like it or not.

Traditional DIY stores know this very well. They don’t just sell basic construction materials anymore, but increasingly also offer ready-made lifestyle products: lamps, furniture, various semi-manufactured products, and so on. What’s more, they know that they need to help amateurs when it comes to making choices. Most websites for DIY stores  DIY feature some form of assistance. Besides tips and suggestions from famous designers, there are online tools that help buyers figure out their personal preferences for interior design. I’ve even seen moodboard tools for interior decoration. For people who feel completely adrift in the sea of choices, there are style coaches to help buyers find out who they are and what choices to make.

Design Literacy

When it comes to more innovative or complex designs, inspiration and imagination are just as crucial as production technologies. This holds true for seasoned pros and enthusiastic amateurs. When motivated prosumers want to express their identities, they need different kinds of knowledge and skills, which together make up what we can call ‘design literacy’. I suggest we conceptualize this at the following three levels:

Strategic vision
Know what you want, based on knowing who you are and what you want to achieve. This is about an awareness of personal goals and values. It can be very explicit, translated into formulated criteria, or very implicit, in which case there is an intuition that can be used to judge examples and design choices. Both approaches can work; more often than not, they co-exist in some form. Whatever it is that you’re going to make, you have to feel its soul and formulate its mission. There is probably no better example here than Steve Jobs, who has always had a very specific vision about using computing technology for personal goals, as opposed to serving the needs of businesses or governments. Apple was founded in 1979; over 30 years later, his vision has become a reality. Every product Apple has produced under Jobs’ guidance was a conscious materialization of that vision. On a more intimate level, amateurs who want to redecorate their homes will be stifled rather than liberated by all the choices and possibilities if they do not have some kind of understanding of what kind of ‘vibe’ or ‘atmosphere’ they want in their house. They, too, need a vision. There is no other way.

Tactical choices
Be able to make choices that determine what it is that you are making. What you are making is ultimately a design that can be produced, in order to make the vision a reality. We are caught between heaven and earth here, and this is the true level where design takes place: crucial decisions are made on a conceptual level that will eventually determine the details of the end result. Choices about content, structure, behaviour and form are made and fixed. This is where professional design becomes a profession, and craftsmanship begins to play a role. The question is: how much professional expertise is needed? Can this be done by an amateur?  AMATEURISSIMO It’s hard to have to start from scratch. Tweaking something that’s already close may be a better way to go. Open design to the rescue! If you see something you like, just download it and modify it to represent your vision. We’ll return to that later.

Operational skills
Be able to use available production tools and infrastructures. This can range from knowing how to point and shoot with a digital camera or upload a video to YouTube to making a final mix of a song that sounds good on different speaker systems or specifying a design with 3D modelling software for a 3D printer.

These are the pillars of what we can call ‘design literacy’: the development of vision (strategic), the formulation of a design (tactical), and technical production (operational). There are interesting interactions between the three levels, however. Ultimately, available production tools and infrastructure determine what can be made in the first place, so operational skills and tactical choices are often strongly aligned. There are also crucial links between tactical choices and strategic vision. If a 3D modelling tool is very user-friendly, very responsive, and well connected to the production tools (possibly through data standards), then the boundary between a sketch and a final design starts to blur, and users can work in a state of flow, where all three levels are active simultaneously.

Online environments prove that well designed infrastructures can facilitate personal expression on a mind-boggling scale, but they have one thing in common: Simplicity.

The distinctions between the three kinds of literacy are epistemological: they involve different kinds of expertise. All three involve mentality, knowledge, and skills – three very familiar pedagogical concepts. Thus, design literacy can be learned, just like many other things, but there’s more to it than learning to work the tools.

Becoming Literate

Professional designers  DESIGNERS have all the necessary expertise. They have an important role to play in the large-scale development of design literacy. They can be heroes when their high-quality designs inspire eager amateurs. They can produce examples to be shared on online platforms that can be used, modified and re-distributed. They can explain how they work, e.g. as teachers in face-to-face courses and online videos. In working towards the advancement of design literacy, professionalism is still our starting point.
Going back to the three central concepts of design literacy mentioned above (vision, design, and production), there are interesting opportunities and challenges in the organization of design literacy:

Strategic vision
The development of a personal vision can be facilitated by presenting, explaining and discussing high-quality designs from professional designers. The development of vision can be a vulnerable and intuitive process, and seeing how pros do it (in a video interview, for instance) can be very helpful and inspiring. Formulating the right question is often the best way to try and find a solution. Inspiration is the keyword here: designers can be inspiring through what they make, but also through showing how they came up with the right vision to begin with.

Tactical choices
The formulation of a design can be facilitated by the same high-quality examples, when they are published in ways that allow for inspection, modification and sharing. Open design plays a crucial role in this. Online environments that feature collections of high-quality examples that can be analysed, used, modified, discussed and re-published hold immense potential. Users need to be able to inspect the internal structure of a design, and then modify and share it. Designers can produce these examples and share their methods and insights in interviews or debates, and design teachers can develop new pedagogical methods and formats. In the world of digital media, users make mashups,  REMIX devising new combinations of chunks of information found elsewhere to create coherent new constructs. Open design allows for a similar approach to 3D objects, physical equivalents to mashups that can also be shared and discussed with others.

Operational skills
Technical production is the easiest skill, since all it requires is decent interface design for the relevant tools, supported by access to technical knowledge in the form of instruction manuals in print, video, or other formats. Many people can teach themselves how to do this and help each other using social media, such as forums or blogs.

Not everything can be done exclusively in the digital domain. There is definitely a need for face-to-face encounters with ‘designer heroes’, design teachers and fellow design amateurs. There is a potential here for existing cultural institutions like public libraries, archives and museums to organize the exchange of knowledge  KNOWLEDGE between pros and amateurs, as well as but just as much between amateurs and other amateurs. They can become hotspots in the real world where amateurs go to work on their expertise. STEIM is an example of such a hotspot.

Design into the Future

The STEIM story below illustrates a shift in the focus of skilled professionals: from high-quality production to high-quality coaching and education in order to facilitate expression and reflection in a larger community of passionate amateurs. Such a significant shift does not happen out of the blue; it is a deliberate choice and it takes real work, based on an informed awareness of how our world is changing.  REVOLUTION This new mentality is the ideal complement to the exchange of information and ideas that is made possible through open design and new technological infrastructures. This calls for an ecosystem of people, institutions, relationships, tools and open infrastructures, where design becomes a natural activity for all those involved. Deliberate initiatives to foster design literacy need to address the three levels discussed above. Open design is essentially a highly social affair: amateur users will gather in online environments that help them by offering good examples in the form of available open designs, which are accompanied by interviews with heroes that explain how they navigate through all three levels of literacy. Heroes are attractors; people will flock around them, learn from them and from each other. Some parts of this ecosystem will grow and flourish autonomously, but others will need to be very consciously designed and planned in order to create a vibrant and living environment. It will help us find inspired ways to deal with tough issues like identity and choice in complex and unpredictable networks.


THE STEIM STORY

STEIM is a laboratory in Amsterdam that experiments with electronic musical instruments for live performance. This was a very specialized affair in the 80s and in the 90s. STEIM’s instrument designers would develop personal instruments and user interfaces for musicians. They became world-famous for their expertise in connecting musical goals (strategic) to technical solutions (operational) through skilful design (tactical).

During the 90s, however, sensor technology and software became more widely available and more affordable. At the same time, the internet became a widely used platform for sharing knowledge and solutions among musicians. STEIM’s core activity became a DIY craze. STEIM consistently supported this trend, being one of the first organizations to hack cheap Wii controllers for musical applications and publishing electronic diagrams for its best-known musical instrument, the crackle box. But as this was happening, STEIM and its professionals had to reorient themselves to the changing situation.

Nowadays, STEIM is an important node in a world-wide knowledge network. There are more workshops than ever before. Moreover, starting in 2011, STEIM will offer a master’s degree in ‘Instruments and Interfaces’ in collaboration with the Royal Conservatory in The Hague. It has become a vibrant hub for learning about DIY instrument design and meeting other people with similar interests. There is a strong co-creation culture. Musicians are challenged to develop their personal ideas about the kind of music they want to make (strategic vision), and STEIM helps them develop their ideas, through co-design (tactical choices) and co-production by means of software configuration and the building of physical objects (operational skills).

Many people who visit STEIM don’t just leave with an instrument; in their time there, they have learned how an instrument is made. And the instrument is just the beginning; there needs to be substantial time spent in learning to play it, as well as resisting the temptation to tweak it further. This represents a big risk at the tactical choice level: know when to stop modifying and start using a product! This is expertise that transcends the operational level. This is years and years of experience feeding into how musicians are currently coached and educated.

www.steim.org

]]>
http://opendesignnow.org/index.php/article/design-literacy-organizing-self-organization-dick-rijken/feed/ 0
THE GENERATIVE BEDROCK OF OPEN DESIGN / MICHEL AVITAL http://opendesignnow.org/index.php/article/the-generative-bedrock-of-open-design-michel-avital/ http://opendesignnow.org/index.php/article/the-generative-bedrock-of-open-design-michel-avital/#comments Fri, 27 May 2011 08:32:25 +0000 remko http://opendesignnow.org/?p=405 Continue reading ]]> A shift in communications infrastructure is an important factor in how open design has taken shape and the possibilities it offers. It is a transition from the ‘internet of things’ to the things of the internet. Michel Avital analyses the main drivers behind open design, open innovation and open source. He describes the major features of open design and explores the preconditions for open design in relation to four aspects: object, process, practice and infrastructure, with a specific focus on infrastructure.

Michel Avital

‘Openness’ is a recurring and increasingly frequent theme in recent buzzwords that populate the discourse on the forefront of technology, from open source via open innovation to open design. A review of related articles in the popular press and trade magazines indicates that the modifier open often denotes better, cheaper and faster. Apparently, the qualities inherent in openness or being open have materialized as the underlying enablers that pave the way for creativity, innovation and prosperity. In keeping with the thrust of this volume, this article contextualizes open design, focusing in particular on the characteristics of the infrastructure that are most conducive to its generative capability in relationship to innovation.

The Context of Open Design

Openness pertains to accessibility. Openness is a relative characteristic that refers to the degree to which something is accessible to view, modify and use. The ability to view refers to sharing  SHARING content and the availability of detailed information about the subject matter. The ability to modify refers to sharing labour and empowering changes, improvements and extensions of subject matter. The ability to use refers to sharing ownership and enabling semi or unrestricted reuse of the subject matter or parts thereof. These are the three fundamental operations that are implied by accessibility. Subsequently, from a systems theory perspective, openness relates to the transparency and permeability of any natural or constructed boundaries. Yet openness is not merely a technical attribute that conveys flow or lack thereof; it is an embedded trait that pervades the structure of a thriving civil society. From a social perspective, openness is a core characteristic of an infrastructure that conveys and reinforces sharing, reciprocity, collaboration, tolerance, equity, justice and freedom. The application of openness,  OPEN EVERYTHING as implied by various accessibility features, to a growing number of central ubiquitous practices that drive the human enterprise, has turned into a megatrend that can be labelled the Rise of Open-X. Megatrends are widespread trends which have a major impact and are likely to affect all levels – individuals, organizations, markets, countries and civil society – for a long duration. Understanding megatrends  TRENDS and their rolling effects can provide valuable information for developing futuristic scenarios and can subsequently help to shape current actions in anticipation of that future. So far, as described below, Open-X has materialized in various configurations that can be classified according to three archetypes: open innovation, open source and open design. The three archetypes are juxtaposed in the table on the previous page as a preliminary overview to point out their different respective value propositions and thrust (as a distributed collective action), core openness orientation, and prime actors involved.

Open Innovation

The value proposition and thrust of open innovation is ‘distributed knowledge’ processes that emphasize the view-related capabilities of openness. The prime actors of open innovation are organizations. According to the traditional doctrine, industry leaders self-create the most and the best ideas; innovation should therefore be fostered by internal development teams behind high organizational walls and protected as a trade secret. In contrast, according to open innovation, industry leaders make the best use of internal and external ideas to develop better business models. In other words, superior outcome should be expected with permeable boundaries between a firm and its environment, which allow idea flow, knowledge
KNOWLEDGE exchange, and intellectual property trade. Reaching out and tapping into external knowledge resources extends the generative and innovative capabilities of a firm, as demonstrated by industry leaders like Procter & Gamble, Boeing, Philips and many others. The tenets of open innovation have promoted the proliferation of communities of practice and laid the foundations of crowdsourcing.  CROWDSOURCING

Open Source

The value proposition and thrust of open source is ‘distributed development’ processes that emphasize the modification-related capabilities of openness. The prime actors of open source are developers. The open source concept originated in the software industry; according to the traditional doctrine, software is developed in commercial software firms by professional personnel, guarded through legal and technical measures, and then licensed for a fee. In contrast, according to the open source business model, software is developed through coordinated peer production by independent volunteers.

THE APPLICATION OF OPENNESS TO A GROWING NUMBER OF PRACTICES THAT DRIVE THE HUMAN ENTERPRISE, HAS TURNED INTO A MEGATREND THAT CAN BE LABELED THE RISE OF OPEN-X.

Subsequently, everyone can freely access the source code, and can modify and redistribute it under the same terms, thus nourishing continuous cycles of improvement, adaptation, and extension in a distributed fashion. Reaching out and tapping into external development resources extends the generative and innovative capabilities of a core project. Inspired by the impact of high-profile projects like Linux and Mozilla Firefox, the tenets of the open source development, licensing and distribution model have promoted the proliferation of open source projects of all sorts – from digital content development (e.g. Wikipedia), via vehicles (e.g. c,mm,n) and beverages (e.g. Free Beer – Vores øl), to 3D printers (e.g. RepRap), just to name a few.  OPEN EVERYTHING

Open Design

The value proposition and thrust of open design is ‘distributed manufacturing’ processes that emphasize the use-related capabilities of openness. The prime actors of open design are consumers. Although designers undoubtedly play a pivotal role in fostering open design by producing and sharing suitable design blueprints,  BLUEPRINTS ultimately the consumers who engage in distributed manufacturing are the core players and raison d’être of open design. According to the traditional doctrine, design is mostly a preliminary stage prior to commercial manufacturing and distribution. In contrast, open design is directed toward consumers who engage in fabrication, passing over the conventional manufacturing and distribution channels. Open design implies that the design blueprints are publicly available, sharable, licensed under open-access terms, and distributed digitally in a general design specification file format (e.g. dxf, dwg). Moreover, open design is not black-boxed or exclusive; it implies reconfigurable and extensible design that can be fabricated in distributed and scalable fashions through commercially available, off-the-shelf, multi-purpose means of production.

A structured description of the unique features and boundaries of open design is provided in the table on the next page. The inherent reconfiguration and extension potential of a user-driven open design reinforces the generative and innovative capabilities of consumers. The tenets of open design have inspired the development of public manufacturing facilities networks like Fab Lab, and laid the foundations of open design clearinghouses like Ponoko, Shareable and Instructables. In summary, the distinctions between the three archetypes of Open-X are more a matter of thrust and areas of application. They are not mutually exclusive. All three inherit the core features of openness and naturally overlap to some degree. Open design, for example, is not merely a matter of re-use and distributed manufacturing – it also entails sharing design blueprints and sharing extensions thereof, thus distributing knowledge and development. Building on the working definition of open design and an understanding of its unique features, the remainder of this article will discuss its potential, in particular addressing the infrastructure characteristics that are most conducive to its generative capability in the context of innovation.

Unpacking Open Design

Open design signifies open-access digital blueprints that can be adapted at will to meet situated requirements, and can subsequently be used by consumers to fabricate products on demand by commercial, off-the-shelf production methods. The open design model diminishes the traditional vertical value chain that is formed by designer-manufacturer-distributor-consumer relationships and offers an alternative, open web of direct links between designers and consumers. The resulting short-spanned, transient and non-hierarchical relationships forge dynamic and flexible arrays of blueprints that are not only user-centred but also user-driven.

The discourse on open design encompasses a multitude of considerations: for example, design specification, fabrication, collaborative action, supply and value chain management, business models, legal aspects, technological infrastructure and normative values. The complexity of this ecology can be untangled to some extent by classifying the underlying issues of open design into four interdependent conceptual layers, as follows:

Object layer refers to the design blueprints that enable and constrain the specification of the design artefacts. This layer encompasses the design and distribution of open design objects, that is, configurable and extensible blueprints that are available under open access license in online public repositories.

Process layer refers to the means of production that enables and constrains the fabrication of the design objects. This layer encompasses open design fabrication, that is, the application and operation of commercial, off-the-shelf machinery like printers,  PRINTING  laser cutters or CNC machine tools to produce customized products with no custom-built moulds or machines.

Practice layer refers to the work practices that enable and constrain the conception of the design processes. This layer encompasses open design culture, that is, the related nomenclature, professional standards, craftsmanship, rules of the trade, code of conduct, rituals and normative values.

Infrastructure layer refers to the underlying institutional and technical foundations that enable and constrain the vitality of the design practices. This layer encompasses open design substructure, that is, the related legal system, market structure and technical archi—tecture that govern open design activities and future growth.

The discourse so far is focused on the object and process layers, with some touches upon the practice layer. However, quite surprisingly, despite its fundamental role, the infrastructure layer is virtually ignored.

Designing Generative Infrastructure

The infrastructure that governs open design activities, business models and development is based on the related code of law, market structure and technical architecture, which together enable and constrain most human activity systems in an attempt to balance inherent conflicts and pursue the common good. In a general sense, infrastructures are designed to promote fairness, wealth and operational efficiency. TEMPLATE CULTURE Much has been written about the general nature of infrastructures elsewhere, leaving no need to reiterate it here. Instead, let us elaborate on the generative capability of infrastructure as an additional area of concern that should be considered particularly in the context of developing infrastructure requirements for open design. In view of the generative character of design in general, and open design in particular, developing an appropriate infrastructure should aim to incorporate the structural features that are most conducive to creative processes and products. Building on the concept of generative design, I suggest a set of generalizable considerations for designing such infrastructures. More specifically, I propose that the infrastructure of open design should be evocative, engaging, adaptive, and open.

Generative design refers to the design considerations in developing an array of artefacts and interactions that support and enhance generative capacity – that is, the considerations in designing systems that are conducive to the ability of a person or group to produce new configurations and possibilities, to reframe the way we see and understand the world, and to challenge the normative status quo. 1 People’s generative capacity is a key source of innovation; by definition, generative design aims to encapsulate the design directives that enhance and complement that human capability.

In general, generative capacity refers to having an evocative power or aptitude that can result in producing or creating something, or tapping into a source of innovation. In the context of open design infrastructure, the modifier ‘generative’ denotes that the noun it modifies is conducive to the production of something innovative or the discovery of new and hitherto unknown design alternatives. In other words, generative design refers here to the design requirements and considerations in developing open design infrastructures – that is, the related code of law, market structure and technical architecture – that augment people’s natural ability to innovate. Subsequently, four top-level design directives are suggested for infrastructures, as follows:

Generative infrastructure is evocative
Generative infrastructure inspires people to create something unique. It evokes new thinking and enables them to translate their ideas into a new context. The infrastructure can help to create the environment or conditions that are prone to those insights by generating and juxtaposing diverse frames that are not commonly associated with one another within an underlying context. Systemic features that drive evocative design enable, for example, seeing an object or situation from multiple perspectives, testing it in multiple situations, examining it at multiple degrees of granularity, and exploring multiple overlay configurations.

Generative infrastructure is engaging
Generative infrastructure is enchanting and holds the attention of people by inducing their natural playfulness and ‘flow experience’. The infrastructure TEMPLATE CULTURE can help in the creation of engaging environments or platforms that stimulate the users’ cognitive spontaneity and playfulness as well as overall positive affect state, thus encouraging further exploration, tinkering and experimentation. Systemic features that drive engaging design enable, for example, fostering positive affect and high spirit that stimulate a state of ‘joie de vivre’, activating cognitive spontaneity induced by playfulness, and stirring up curiosity through intriguing challenges.

Generative infrastructure is adaptive
Generative infrastructure is flexible and conducive to effective use by a heterogeneous set of people in their own respective environments and for various tasks within an intended scope. It can be adapted with respect to the type of users or groups that it serves in diverse problem spaces. It is also simple to understand and easy for anyone to master. The infrastructure can help in the creation of adaptive systems or platforms that are flexible yet powerful enough to enable the generation of a continuous stream of new ideas and configurations. Systemic features that drive adaptive design enable, for example, user-induced tailoring and customization to meet situated needs, self-production of complementary extensions and features that meet new or initially unforeseen needs, automatic system-induced adaptation, and overall scalable functionality with no regard to size-related attributes.

Generative infrastructure is open
Generative infrastructure accentuates permeable boundaries and transparency that promote co-production, cross-fertilization and exchange of any kind. The infrastructure  ARCHITECTURE can help in the creation of open systems or platforms that provide connectivity, enable transparency, allow information sharing, and encourage dialogue with no regard to institutionally or culturally imposed boundaries. Systemic features that drive open design enable, for example, free and unrestricted access to information, communication among all stakeholders, and the easy integration of third-party extensions by independent boundary-spanners. In summary, from the generative requirement perspective, infrastructures of open design should be evocative, engaging, adaptive and open. However, while the last two directives are clearly implied in the discourse of open design, the first two have not yet been addressed. Subsequently, the inclusion of evocative and engaging features in the infrastructure of open design, let alone in the discourse concerning its requirements, is strongly recommended. Although this conclusion might not be obvious for legislators, policymakers, managers, and engineers, it should be quite intuitive for designers.The expected proliferation of open design has far-reaching implications that are likely to extend well beyond design practices as such and have significant socio-economic effects on a global scale.

Another Brave New World

Open design presents entrepreneurs and agile companies with a grand opportunity to expand existing markets, to develop new ones, and to capture large shares from current market leaders. Mobilizing open design to generate organizational value and to boost its market position requires radical strategic and operational changes. However, the tight coupling between design and production, which has so far been instrumental in fostering economies of scope and competitive advantages for the current industry leaders, is now likely to hinder their agile capability and their ability to take advantage of the new vistas that are beginning to be afforded by open design.

PEOPLE’S GENERATIVE CAPACITY IS A KEY SOURCE OF INNOVATION; BY DEFINITION, GENERATIVE DESIGN AIMS TO ENCAPSULATE THE DESIGN DIRECTIVES THAT ENHANCE AND COMPLEMENT THAT HUMAN CAPABILITY.

The adoption of open design practices by esta-blished industry leaders, let alone run-of-the-mill manufacturers, where the dominant culture and mode of product design has been shaped and reshaped over long periods, is likely to pose multiple challenges to these organizations at all levels, from the boardroom to the production floor. Subsequently, the resistance to change in these organizations is expected to reinforce the current tight coupling between product design and industrial manufacturing. Just as Amazon could conquer the market share of established retailers that were unable to adapt quickly enough to the new marketplace of e-commerce, emerging market players based on open design business models are likely to cannibalize the turf of established manufacturers that are entrenched in the old model of industrial production.

From Push to Pull

Open design paves the way to the next iteration in the massive shift from push to pull business models. In general, push business models are based on top-down value chains where a line of a few mass-produced products is distributed broadly through value-driven downstream marketing techniques. In contrast, pull business models are based on bottom-up value chains where a line of customer-configured products are distributed individually through features-driven upstream marketing techniques. Whereas push models are based on economies of scale and emphasize cost efficiency, pull models are based on flexible manufacturing and emphasize mass ustomization. In previous centuries, most artefacts – from shoes to carriages – were custom-designed and built on demand by a craftsperson.
Building on push business models, the industrial revolution almost wiped out cottage manufacturing and shifted its lion’s share to production lines and mass-scale manufacturing in factories that offer economies of scope and scale. Consequently, the resulting abundant supply of affordable products was instrumental to massive market expansion, higher living standards, and growing wealth across the board. This prosperity has come at the expense of product variety and personalization, as most notoriously conveyed by Ford’s remark “any color as long as it’s black”.  MASS CUSTOMIZATION

OPEN DESIGN INFUSES ‘DO IT YOURSELF’ WITH A WHOLE NEW MEANING THAT GOES FAR BEYOND COST SAVINGS OR THE JOY OF CRAFTING.

The advent of the internet has bestowed a new communication infrastructure that made it possible not only to exceed the economic accomplishments of industrialization, but also to offer an unprecedented variety of products and personalization thereof. The latter has been accomplished through pull business models and upstream marketing that take advantage of automated fulfilment and logistics centres supported by fast, wideband, many-to-many communication networks. The extent of product variety and personalization has been attained and fortified in three main phases enabled by the accessibility (i.e. ability to view, modify and change) afforded by the internet. In the first phase, retailers have introduced consumers to the ability to view up-to-date, rich and targeted information about off-the-shelf products, thus enabling them to make informed decisions. Then, in the second phase, manufacturers have introduced consumers to the ability to modify base products and specify a customized configuration thereof, thus enabling them to fine-tune a product according to their preferences. Finally, in the still-nascent third phase, designers have introduced to consumers the ability to use blueprints for self-managed fabrication, thus enabling them to gain full control over the features of the resulted product as well as its production process. In summary, as in a stage model, every phase builds upon the previous one to bring the consumers closer to the designers and to provide them with more control over what they get, how it is produced, and how it is delivered.

The Road Ahead

Open design is still nascent, yet it provides a springboard for radical changes in the way we acquire almost anything that is currently mass-produced. Open design presents a new way of design that complements new methods of fabrication, commonly branded as 3D printers  PRINTING of all sorts. Open design infuses ‘Do It Yourself’ with a whole new meaning that goes far beyond cost savings or the joy of crafting. It allows consumers to be in charge and offers them an opportunity for full customization of an artefact, including a choice of features, materials and delivery options. It allows for continuous innovation and localization, which in turn has major implications for consumers in shoestring economies as well as in developed countries. It also provides a fertile ground for the development of new forms of organization, new business models, new supply chain structures, new varieties of products and services, and the like, as demonstrated in the many cases in this volume. Nonetheless, traditional design and mass manufacturing practices have been extremely valuable since the Industrial Revolution  REVOLUTION and are unlikely to disappear in the future. Although the threat to the dominant technologies and practices may seem implausible, open design presents a clear alternative that may grow strong once it reaches a critical mass in the right socio-economic conditions. Open design is not a threat to designers’ livelihood. Quite the contrary; it opens new vistas and new opportunities and is likely to generate increased consumer appreciation of the role of designers. Moreover, it is likely to bring designers closer to the intended and unintended applications of their designs. Grand opportunities also imply undeveloped land. There is much development to do in all four layers of open design – the object, process, practice and infrastructure layers. To a large extent, the discourse mirrors the field; the most immediate attention is required in shaping practices and laying the foundations of the support infrastructures.

Conclusion

It has been suggested that open design stands for accessible design in the form of blueprints that are publicly open to view, modify and use under open-access terms. Moreover, open design often implies that the design blueprints are available via open-access digital repositories, that they can be adapted at will to meet situational requirements, and that they can be used by consumers to fabricate products on demand by commercial, off-the-shelf means of production.  DOWNLOADABLE DESIGN Open design is generative. It is conducive to continuous re-design, adaption, refinement and extension. Open design is a potent elixir that mitigates stagnation and awakens generative action.

  1. See Avital, M. and Te’eni, D, ‘From Generative Fit to Generative Capacity: Exploring an Emerging Dimension of Information Systems Design and Task Performance’, Information Systems Journal, 19(4), 2009, p. 345-367.
]]>
http://opendesignnow.org/index.php/article/the-generative-bedrock-of-open-design-michel-avital/feed/ 915